The geometry of concurrence as a measure of entanglement

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys. A: Math. Theor. 401361
(http://iopscience.iop.org/1751-8121/40/6/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.147
The article was downloaded on 03/06/2010 at 06:31

Please note that terms and conditions apply.

The geometry of concurrence as a measure of entanglement

Toshihiro Iwai
Department of Applied Mathematics and Physics Kyoto University, Kyoto-606-8501, Japan

Received 31 August 2006, in final form 21 December 2006
Published 23 January 2007
Online at stacks.iop.org/JPhysA/40/1361

Abstract

It is widely recognized that concurrence can be regarded as a measure of twoqubit entanglement. This paper studies the geometry of concurrence for a two-qubit system to show that the concurrence serves as a coordinate of the factor space $G \backslash M \cong[0,1]$, where $M \cong S^{7}$ is the space of normalized two-qubit states, and where $G=U(1) \times S U(2) \times S U(2)$. Any monotonically increasing function of the concurrence can serve as a measure for entanglement. From the viewpoint of Riemannian geometry, a state with concurrence r is shown to be distant from the separable states by $\frac{1}{2} \sin ^{-1} r$, where r ranges over $0 \leqslant r \leqslant 1$. In addition, measures of entanglement for n-qubits are discussed on the basis of a bipartite decomposition $\mathbf{C}^{2^{\ell}} \otimes \mathbf{C}^{2^{m}}$ with $\ell+m=n$. They are invariant under the local unitary transformation group $U\left(2^{\ell}\right) \times U\left(2^{m}\right)$.

PACS numbers: $02.40 . \mathrm{Pc}, 03.65 .-\mathrm{w}, 03.67 .-\mathrm{a}$

1. Introduction

Since Bennet et al [1] and Hill-Wootter [2] it has been widely recognized that concurrence can serve as a measure of two-qubit entanglement. Geometric study of entanglement has already been made in [3-5], for example. However, the full geometric study of the concurrence for two-qubit systems has not yet been made. It is the purpose of this paper to show that the twoqubit concurrence is characterized completely in terms of transformation groups and geometry; concurrence for a two-qubit system proves to be a coordinate of the factor space $G \backslash M \cong[0,1]$, where $G=U(1) \times S U(2) \times S U(2)$ and where $M \cong S^{7}$ is the space of normalized two-qubit states. Further, a state with concurrence r is shown to be distant from the separable states by $\frac{1}{2} \sin ^{-1} r$ with $0 \leqslant r \leqslant 1$, with respect to the metric naturally defined on $G \backslash M$ from that on M. In addition, from the viewpoint of transformation groups, candidates for measures of entanglement for n-qubits are put forward on the basis of a bipartite decomposition of the n-qubit system.

The organization of this paper is as follows. Section 2 is a geometric setting for two-qubit states. The state space M for a two-qubit system is identified with the unit sphere S^{7}, which is
realized in the space of 2×2 complex matrices with constraints. The concurrence of a state $C \in M$ is defined to be $|2 \operatorname{det} C|$. The concurrence is clearly invariant under the transformation $C \mapsto \mathrm{e}^{\mathrm{i} \theta} g C h$ with $\mathrm{e}^{\mathrm{i} \theta} \in U(1)$ and $g, h \in S U(2)$. This fact and the canonical Riemannian structure defined on S^{7} will be used in the succeeding sections. Section 3 contains a review of the Hopf bundle $S^{7} \rightarrow S^{4}$. The bundle is realized as $M \rightarrow M / S U(2)$. In section 4, the factor space $(S U(2) \times S U(2)) \backslash M$ is studied and shown to be homeomorphic with \bar{D}, the closed unit disc. The projection $S^{7} \cong M \rightarrow \bar{D}$ is realized by the map $C \mapsto 2 \operatorname{det} C$. A Riemannian metric on the open subset D of \bar{D} will be obtained by submersing that on M_{1}, where M_{1} is an open dense subset of M. In section 5, the Hopf map $S^{7} \rightarrow S^{4}$ is followed by the map $S^{4} \rightarrow \bar{D}$ to form the projection $S^{7} \rightarrow \bar{D}$. Section 6 deals with entanglement measurement for two-qubits. It turns out that the factor space $(U(1) \times S U(2) \times S U(2)) \backslash M$, on which the concurrence should be defined, is homeomorphic with the closed interval $[0,1]$. The open interval $(0,1)$ is endowed with a Riemannian metric, according to which the point $r \in(0,1)$ is shown to be distant from 0 by $\frac{1}{2} \sin ^{-1} r$, where $\sin ^{-1}$ denote the arcsine. Put another way, a state C with concurrence $r=|2 \operatorname{det} C|$ is distant from the separable states by $\frac{1}{2} \sin ^{-1} r$. Section 7 deals with concurrence as measures of three- and more-qubit entanglement. Section 8 contains concluding remarks and comments.

2. Geometric setting for two-qubit states

The Hilbert space for a two-qubit system is $\mathbf{C}^{2} \otimes \mathbf{C}^{2}$, of which the elements are expressed as $\Psi=\sum c_{j k} \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k}$, where the \boldsymbol{e}_{j} are the basis vectors of the canonical basis of \mathbf{C}^{2}. The space of the normalized states is characterized by $\sum\left|c_{j k}\right|^{2}=1$. Since the matrices $C=\left(c_{j k}\right)$ with $\operatorname{tr}\left(C^{*} C\right)=\sum\left|c_{j k}\right|^{2}=1$ and the normalized states Ψ are in one-to-one correspondence, we take the state space for the two-qubit system as

$$
M:=\left\{\left.C=\left(\begin{array}{ll}
c_{00} & c_{01} \tag{2.1}\\
c_{10} & c_{11}
\end{array}\right) \right\rvert\, \operatorname{tr}\left(C^{*} C\right)=1\right\},
$$

which is diffeomorphic with the unit sphere S^{7}. We note here that the Bell basis for the two-qubit system corresponds to the set of matrices

$$
\begin{array}{ll}
E_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), & E_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\mathrm{i} & 0 \\
0 & -\mathrm{i}
\end{array}\right), \\
E_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & \mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), & E_{4}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) . \tag{2.2}
\end{array}
$$

It is well known that a normalized state Ψ is maximally entangled if and only if $\sqrt{2} C \in U(2)$, and that Ψ is separable if and only if $\operatorname{det} C=0$ [5]. In view of this, one of measures for two-qubit entanglement is given by $|\operatorname{det} C| ; \Psi$ is maximally entangled or separable, according to whether $|\operatorname{det} C|=1 / 2$ or $|\operatorname{det} C|=0$. In [1,2], the concurrence is defined to be the quantity $\left|\sum_{i=1}^{4} \alpha_{i}\right|$, where α_{i} are determined for $C \in M$ by $C=\sum_{i=1}^{4} \alpha_{i} E_{i}$ with E_{i} the matrices given in (2.2). A calculation with this expression of C shows that $2 \operatorname{det} C=\sum_{i=1}^{4} \alpha_{i}^{2}$, so that one takes $|2 \operatorname{det} C|$ as concurrence.

One of our purposes is to characterize the concurrence in terms of transformation groups. Let U_{1} and U_{2} be unitary matrices in $U(2)$. Then the local unitary transformation $\Psi \mapsto\left(U_{1} \otimes U_{2}\right) \Psi$ gives rise to the action of the group $U(2) \times U(2)$ on M in the manner

$$
\begin{equation*}
C \mapsto U_{1} C U_{2}^{T}, \quad C \in M, \quad\left(U_{1}, U_{2}\right) \in U(2) \times U(2) \tag{2.3}
\end{equation*}
$$

In what follows, we work with the action of $G:=U(1) \times S U(2) \times S U(2)$ on M, which is described as

$$
\begin{equation*}
C \mapsto \mathrm{e}^{\mathrm{i} \theta} U_{1} C U_{2}^{T}, \quad C \in M, \quad \mathrm{e}^{\mathrm{i} \theta} \in U(1), \quad\left(U_{1}, U_{2}\right) \in S U(2) \times S U(2) . \tag{2.4}
\end{equation*}
$$

The concurrence $|2 \operatorname{det} C|$ is manifestly invariant under the action of G. It then turns out that $|2 \operatorname{det} C|$ should be defined on the factor space $G \backslash M$. One of our aims is to describe the space $G \backslash M$ in an explicit manner. We have here to refer to [6], in which they state that a measure of entanglement is a function on the space of states of a multiparticle system which is invariant under local unitary operators, i.e., unitary transformations on individual particles. The above group action is already pointed out in [7], but is not associated with the factor space $G \backslash M$.

To measure the entanglement of states, we wish to use a naturally defined metric on $G \backslash M$. To this end, we start with the canonical metric on $M \cong S^{7}$, which is defined through

$$
\begin{equation*}
\left\langle X_{1}, X_{2}\right\rangle=\frac{1}{2} \operatorname{tr}\left(X_{1}^{*} X_{2}+X_{2}^{*} X_{1}\right), \quad X_{1}, X_{2} \in T_{C} M \tag{2.5}
\end{equation*}
$$

where $T_{C} M$ denotes the tangent space to M at C,

$$
\begin{equation*}
T_{C} M=\left\{X \in \mathbf{C}^{2 \times 2} \mid \operatorname{tr}\left(C^{*} X+X^{*} C\right)=0\right\} \tag{2.6}
\end{equation*}
$$

and where $\mathbf{C}^{2 \times 2}$ denotes the linear space of 2×2 complex matrices. We will find out what metric is defined on the factor space $G \backslash M$ in section 6 , which will serve as a measure of entanglement. To be precise, M should be restricted to an open subset of M in order to treat the metric.

3. The Hopf bundle $S^{7} \rightarrow S^{4}$ revisited

Before dealing with the space $G \backslash M$, we wish to study the space $M / S U(2)$ or $S U(2) \backslash M$, which will link our study with a preceding work [5] on entanglement measurement associated with the Hopf bundle $S^{7} \rightarrow S^{4}$.

The group $S U(2)$ acts on M to the both sides:

$$
\begin{equation*}
C \mapsto g C, \quad C \mapsto C g, \quad g \in S U(2) \tag{3.1}
\end{equation*}
$$

Since these actions are both free, the respective factor spaces, $S U(2) \backslash M$ and $M / S U(2)$, are manifolds. The natural projections are realized as
$\pi_{L}: C \mapsto\left(C^{*} C, \operatorname{det} C\right) \in \mathcal{H}_{1} \times \mathbf{C}, \quad \pi_{R}: C \mapsto\left(C C^{*}, \operatorname{det} C\right) \in \mathcal{H}_{1} \times \mathbf{C}$,
respectively, where \mathcal{H}_{1} denotes the space of 2×2 Hermitian matrices of trace 1 . Note here that $C^{*} C$ and $C C^{*}$ are invariant under the left and the right $S U(2)$ actions, respectively. We now verify that each factor space is diffeomorphic with S^{4}. First, we consider the map π_{R}. Since $C C^{*}$ is a Hermitian matrix of trace 1 , we may put $C C^{*}$ in the form

$$
C C^{*}=\frac{1}{2}\left(\begin{array}{cc}
1+t & w \tag{3.3}\\
\bar{w} & 1-t
\end{array}\right), \quad w \in \mathbf{C}, \quad t \in \mathbf{R}
$$

Further, we set $2 \operatorname{det} C=z$. Then, from $\operatorname{det}\left(C C^{*}\right)-|\operatorname{det} C|^{2}=0$, we obtain the equation $1=t^{2}+|w|^{2}+|z|^{2}$, which defines the unit sphere $S^{4} \subset \mathbf{R}^{5} \cong \mathbf{C}^{2} \times \mathbf{R}$. Thus, π_{R} proves to be a map $S^{7} \rightarrow S^{4}$, which is surjective, as is verified by a straightforward calculation. We now show that for a given point $p \in S^{4} \subset \mathcal{H}_{1} \times \mathbf{C}$, the inverse image $\pi_{R}^{-1}(p)$ is diffeomorphic with $S U(2)$. Assume that there are matrices $C_{1}, C_{2} \in M$ such that $C_{1} C_{1}^{*}=C_{2} C_{2}^{*}$ and $\operatorname{det} C_{1}=\operatorname{det} C_{2}$. Then, from $C_{1} C_{1}^{*}=C_{2} C_{2}^{*}$, there exists a unitary matrix g which brings a positive semi-definite matrix $C_{1} C_{1}^{*}=C_{2} C_{2}^{*}$ into a diagonal one, $C_{1} C_{1}^{*}=C_{2} C_{2}^{*}=g \Lambda^{2} g^{-1}$, where Λ^{2} is a positive semi-definite diagonal matrix. Then, one has singular decompositions of C_{1} and C_{2} in the form $C_{1}=g \Lambda h_{1}, C_{2}=g \Lambda h_{2}$, respectively, where Λ is a positive semi-definite diagonal matrix, and $h_{1}, h_{2} \in U(2)$. Hence, we obtain

$$
\begin{equation*}
C_{2}=g \Lambda h_{2}=C_{1} h, \quad h:=h_{1}^{-1} h_{2} . \tag{3.4}
\end{equation*}
$$

Further, we obtain $\operatorname{det} h=1$ from $\operatorname{det} C_{2}=\operatorname{det} C_{1}$. This implies that $\pi_{R}^{-1}(p) \cong \operatorname{SU}(2)$. Thus π_{R} realizes the Hopf bundle $S^{7} \rightarrow S^{4}$ with fibre $S U(2)$. In the same manner, we can verify
that π_{L} also provides the Hopf bundle $S^{7} \rightarrow S^{4}$. In $[3,5]$, the Hopf bundle $S^{7} \rightarrow S^{4}$ is treated in terms of quaternion. They claim that the Hopf map is entanglement sensitive. However, we would like to say that the map $M \rightarrow G \backslash M$ is of more help than the Hopf map $M \rightarrow S U(2) \backslash M$ (section 5).

We proceed to the canonical connection on the bundles $\pi_{L}: S^{7} \rightarrow S^{4}$ and $\pi_{R}: S^{7} \rightarrow S^{4}$, respectively. The vertical subspaces of $T_{C} M$ with respect to the left and right actions are given by

$$
\begin{equation*}
V_{C}^{L}=\{\xi C \mid \xi \in s u(2)\}, \quad V_{C}^{R}=\{C \xi \mid \xi \in s u(2)\} \tag{3.5}
\end{equation*}
$$

respectively. We define the horizontal subspaces H_{C}^{L} and H_{C}^{R} to be the orthogonal complements, $H_{C}^{L}=\left(V_{C}^{L}\right)^{\perp}$ and $H_{C}^{R}=\left(V_{C}^{R}\right)^{\perp}$, of V_{C}^{L} and V_{C}^{R}, respectively, with respect to the Riemannian metric given in (2.5). Then, a straightforward calculation shows that H_{C}^{L} and H_{C}^{R} are given by

$$
\begin{align*}
& H_{C}^{L}=\left\{X \in T_{C} M \mid C X^{*}-X C^{*} \in \operatorname{span}_{\mathbf{R}}\left\{i I_{2}\right\}\right\}, \tag{3.6}\\
& H_{C}^{R}=\left\{X \in T_{C} M \mid C^{*} X-X^{*} C \in \operatorname{span}_{\mathbf{R}}\left\{i I_{2}\right\}\right\}, \tag{3.7}
\end{align*}
$$

respectively, where I_{2} denotes the 2×2 unit matrix.
To get the horizontal subspace in an explicit manner, we consider the $S U(4)$ action on $M \cong S^{7}$. Since $S U(4)$ acts transitively on $M \subset \mathbf{C}^{2} \otimes \mathbf{C}^{2} \cong \mathbf{C}^{4}$, tangent vectors to M will be obtained by the $s u(4)$ action on M. It is well known [8] that $s u(4)$ has the Cartan decomposition

$$
\begin{equation*}
s u(4)=\boldsymbol{k} \oplus \boldsymbol{p} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{align*}
& k=\operatorname{span}\left\{\mathrm{i} I \otimes \sigma_{j} / 2, \mathrm{i} \sigma_{k} \otimes I / 2\right\}, \quad j, k=1,2,3, \tag{3.9}\\
& p=\operatorname{span}\left\{\mathrm{i} \sigma_{j} \otimes \sigma_{k} / 2\right\}, \quad j, k=1,2,3, \tag{3.10}
\end{align*}
$$

and where σ_{j} are the Pauli matrices,

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{3.11}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

We note here that $\xi \otimes \eta$ acts on M in the manner that $C \mapsto \xi C \eta^{T}$, and that \boldsymbol{k} and \boldsymbol{p} satisfy

$$
\begin{equation*}
[k, k] \subset k, \quad[p, k] \subset p, \quad[p, p] \subset k . \tag{3.12}
\end{equation*}
$$

We can verify that the subalgebra k generates the vertical subspace $V_{C}^{L}+V_{C}^{R}$. In fact, we observe that $\mathrm{i} I \otimes \sigma_{j} / 2$ and $\mathrm{i} \sigma_{k} \otimes I$ yield vertical tangent vectors

$$
\frac{\mathrm{i}}{2} C \sigma_{j}^{T} \in V_{C}^{R}, \quad \frac{\mathrm{i}}{2} \sigma_{k} C \in V_{C}^{L}
$$

respectively. In what follows, the singular decomposition $C=g \Lambda h$ is of great help, where $\Lambda=\operatorname{diag}\left(\mu_{1}, \mu_{2}\right)$ with μ_{k} singular values of C and where $g, h \in U(2)$. We observe from the singular decomposition of C that the vertical vectors $\xi \Lambda$ and $\Lambda \eta^{T}$ at $\Lambda=\operatorname{diag}\left(\mu_{1}, \mu_{2}\right)$, with $\xi, \eta \in s u(2)$, are carried to vertical vectors at $C=g \Lambda h$ by $\mathrm{L}_{g} \circ \mathrm{R}_{h}$. In fact, one has

$$
g(\xi \Lambda) h=\operatorname{Ad}_{g}(\xi) C, \quad g\left(\Lambda \eta^{T}\right) h=C \operatorname{Ad}_{h^{T}}(\eta)^{T}
$$

where it is to be noted that $\operatorname{Ad}_{g}: s u(2) \rightarrow s u(2)$ if $g \in U(2)$.
We turn to the horizontal subspace at $\Lambda=\operatorname{diag}\left(\mu_{1}, \mu_{2}\right)$, and then proceed to the horizontal subspace at $C=g \Lambda h$. While k is associated with vertical vectors, horizontal vectors will be obtained by the action of \boldsymbol{p}. We have candidates, $\mathrm{i} \sigma_{j} \Lambda \sigma_{k}^{T}, j, k=1,2,3$, for horizontal
vectors at Λ. Our task is now to ask if these vectors are horizontal or not. A straightforward calculation results in

$$
\begin{align*}
& H_{\Lambda}^{R}=\operatorname{span}_{\mathbf{R}}\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\} \tag{3.13}\\
& H_{\Lambda}^{L}=\operatorname{span}_{\mathbf{R}}\left\{X_{1}, X_{2}, X_{5}, X_{6}\right\} \tag{3.14}
\end{align*}
$$

where

$$
\begin{array}{lll}
X_{1}=\mathrm{i} \sigma_{1} \Lambda \sigma_{1}^{T}, & X_{2}=\mathrm{i} \sigma_{1} \Lambda \sigma_{2}^{T}, & X_{3}=\mathrm{i} \sigma_{1} \Lambda \sigma_{3}^{T} \\
X_{4}=\mathrm{i} \sigma_{2} \Lambda \sigma_{3}^{T}, & X_{5}=\mathrm{i} \sigma_{3} \Lambda \sigma_{1}^{T}, & X_{6}=\mathrm{i} \sigma_{3} \Lambda \sigma_{2}^{T} \tag{3.15}
\end{array}
$$

The horizontal subspace at Λ is carried to that at $C=g \Lambda h$ by $\mathrm{L}_{g} \circ \mathrm{R}_{h}$, which can be shown in a straightforward manner:

$$
\begin{equation*}
H_{C}^{L}=g H_{\Lambda}^{L} h, \quad H_{C}^{R}=g H_{\Lambda}^{R} h . \tag{3.16}
\end{equation*}
$$

We are now interested in the orthogonality of these horizontal vectors. A straightforward calculation shows that

$$
\begin{equation*}
\left\langle X_{k}, X_{\ell}\right\rangle=\delta_{k \ell}, \quad k, \ell \in\{1,2,3,4\}, \quad \text { or } \quad k, \ell \in\{1,2,5,6\}, \tag{3.17}
\end{equation*}
$$

where X_{k} denote the basis vectors in H_{Λ}^{R} or in H_{Λ}^{L}, according to whether $k \in\{1,2,3,4\}$ or $k \in\{1,2,5,6\}$. Equation (3.17) is true for H_{C}^{R} and for H_{C}^{L}. In fact, as easily seen, for tangent vectors X and Y at Λ, one has

$$
\begin{equation*}
\langle g X h, g Y h\rangle_{C}=\langle X, Y\rangle_{\Lambda} \tag{3.18}
\end{equation*}
$$

4. $S U(2) \times S U(2)$ action

We now consider the left and the right $S U(2)$ actions simultaneously,

$$
\begin{equation*}
C \mapsto g C h^{T} \quad(g, h) \in S U(2) \times S U(2) \tag{4.1}
\end{equation*}
$$

which is a restriction of the map (2.4). Since the group $U(1)$ is easy to treat, we study the above map in this section, and proceed to the full map (2.4) in section 6.

We start by obtaining the isotropy subgroup of $S U(2) \times S U(2)$ at $\Lambda=\operatorname{diag}\left(\mu_{1}, \mu_{2}\right)$ with $\mu_{1} \neq \mu_{2}, \mu_{j} \geqslant 0$. Let $(g, h) \in S U(2) \times S U(2)$ and $\Lambda=\operatorname{diag}\left(\mu_{1}, \mu_{2}\right)$ with $\mu_{1}>\mu_{2} \geqslant 0$. Then, the equation $g_{0} \Lambda h_{0}^{T}=\Lambda$ is shown to be solved by

$$
g_{0}=\left(\begin{array}{cc}
\mathrm{e}^{\mathrm{i} \chi} & 0 \tag{4.2}\\
0 & \mathrm{e}^{-\mathrm{i} \chi}
\end{array}\right), \quad h_{0}=\left(\begin{array}{cc}
\mathrm{e}^{-\mathrm{i} \chi} & 0 \\
0 & \mathrm{e}^{\mathrm{i} \chi}
\end{array}\right)=g_{0}^{-1} .
$$

Hence the isotropy subgroup at $\Lambda=\operatorname{diag}\left(\mu_{1}, \mu_{2}\right)$ with $\mu_{1}>\mu_{2} \geqslant 0$ proves to be

$$
\begin{equation*}
G_{\Lambda}=\left\{\left(g_{0}, g_{0}^{-1}\right) \mid g_{0}=\operatorname{diag}\left(\mathrm{e}^{\mathrm{i} \chi}, \mathrm{e}^{-\mathrm{i} \chi}\right)\right\} \cong U(1) \tag{4.3}
\end{equation*}
$$

If $\mu:=\mu_{1}=\mu_{2}>0$, the isotropy subgroup at $\Lambda=\mu I$ is given by

$$
\begin{equation*}
G_{\Lambda}=\{(g, \bar{g}) \mid g \in S U(2)\} \cong S U(2) \tag{4.4}
\end{equation*}
$$

For a generic $C \in M$, we put C in the form $C=g \Lambda h, \Lambda=\operatorname{diag}\left(\mu_{1}, \mu_{2}\right)$ with $g, h \in U(2)$, where $\mu_{k} \geqslant 0$ are the singular values of C. Then, for $\left(g_{0}, h_{0}\right) \in G_{\Lambda}$ with $\mu_{1} \neq \mu_{2}$, one obtains $\mathrm{A}_{g}\left(g_{0}\right) C\left(\mathrm{~A}_{h^{T}}\left(h_{0}\right)\right)^{T}=C$, where A_{g} denotes the inner automorphism, $\mathrm{A}_{g}(k)=g k g^{-1}$. This implies that

$$
\begin{equation*}
G_{C}=\left\{\left(\mathrm{A}_{g}\left(g_{0}\right), \mathrm{A}_{h^{T}}\left(h_{0}\right)\right) \mid\left(g_{0}, h_{0}\right) \in G_{\Lambda}\right\} \cong U(1) \tag{4.5}
\end{equation*}
$$

The same reasoning is true if $\mu_{1}=\mu_{2}$, and thereby resulting in $G_{C} \cong S U(2)$. It turns out that the isotropy subgroup of $S U(2) \times S U(2)$ at C is $U(1)$ or $S U(2)$ according to whether $\mu_{1} \neq \mu_{2}$ or $\mu_{1}=\mu_{2}$:

$$
G_{C} \cong\left\{\begin{array}{ccc}
U(1) & \text { if } \quad \mu_{1}(C) \neq \mu_{2}(C) \tag{4.6}\\
S U(2) & \text { if } \quad \mu_{1}(C)=\mu_{2}(C)
\end{array}\right.
$$

where $\mu_{k}(C), k=1,2$, denote the singular values of $C \in M$.
According to whether the singular values are different or not, the state space $M \cong S^{7}$ is broken up into two subsets,

$$
\begin{equation*}
M=M_{1} \cup M_{2}, \tag{4.7}
\end{equation*}
$$

where
$M_{1}=\left\{C \in M \mid \mu_{1}(C) \neq \mu_{2}(C)\right\}, \quad M_{2}=\left\{C \in M \mid \mu_{1}(C)=\mu_{2}(C)\right\}$.
These subsets are invariant under the $S U(2) \times S U(2)$ action, since the singular values are invariant under the transformation $C \mapsto g C h^{T}$ with $(g, h) \in S U(2) \times S U(2)$.

We are to look into the invariant subsets, M_{1} and M_{2}. First we take up M_{2}. Then, $C \in M_{2}$ is expressed as $C=g \Lambda h$ with $\Lambda=\operatorname{diag}\left(\mu_{1}, \mu_{2}\right), \mu_{1}=\mu_{2}$, and $g, h \in U(2)$. Since $\operatorname{tr}\left(C^{*} C\right)=\mu_{1}^{2}+\mu_{2}^{2}=1$, one has $\mu_{1}^{2}=\mu_{2}^{2}=1 / 2$, so that $\sqrt{2} C=g h \in U(2)$. This implies that $M_{2} \cong U(2)$. The isotropy subgroup at $C \in M_{2}$ is already known to be a subgroup isomorphic with $S U(2)$. Hence, the orbit through $C \in M_{2}$ is diffeomorphic with $(S U(2) \times S U(2)) / S U(2) \cong S U(2)$, so that the orbit space proves to be

$$
\begin{equation*}
S U(2) \backslash M_{2} \cong S U(2) \backslash U(2) \cong U(1) \tag{4.9}
\end{equation*}
$$

We turn to M_{1}. Since the isotropy subgroup at $C \in M_{1}$ is isomorphic with $U(1)$, the orbit through C is diffeomorphic with $(S U(2) \times S U(2)) / U(1)$. We wish to know of the orbit space $(S U(2) \times S U(2)) \backslash M_{1}$. To this end, we take up $\operatorname{det}(C)$, which is invariant under the $S U(2) \times S U(2)$ action. On account of the constraint that $\operatorname{tr}\left(C^{*} C\right)=1$, one has

$$
\begin{equation*}
\operatorname{det}\left(C^{*} C\right)=\mu_{1}^{2} \mu_{2}^{2} \leqslant\left(\frac{\mu_{1}^{2}+\mu_{2}^{2}}{2}\right)^{2}=\left(\frac{1}{2} \operatorname{tr}\left(C^{*} C\right)\right)^{2}=\frac{1}{4} \tag{4.10}
\end{equation*}
$$

so that

$$
\begin{equation*}
|\operatorname{det}(C)| \leqslant \frac{1}{2} \tag{4.11}
\end{equation*}
$$

The equality occurs if and only if $\mu_{1}=\mu_{2}$. Put another way, $|\operatorname{det}(C)|=1 / 2$ if and only if $C \in M_{2}$. Hence, for $C \in M_{1}$, we have $|\operatorname{det}(C)|<1 / 2$.

We are allowed to regard $2 \operatorname{det}(C)=z$ as the map

$$
\begin{equation*}
2 \text { det }: M_{1} \longrightarrow D:=\{z \in \mathbf{C}| | z \mid<1\} . \tag{4.12}
\end{equation*}
$$

We show that this map is surjective. For a given $z=r \mathrm{e}^{\mathrm{i} \theta} \in D$ with $0 \leqslant r<1$, we have to solve the equation $2 \operatorname{det}(C)=z$. To this end, we choose to look for C in the form of singular decomposition, $C=g \Lambda h$, where $g, h \in U(2)$ and $\Lambda=\operatorname{diag}\left(\mu_{1}, \mu_{2}\right)$. Let g_{0}, h_{0}, and Λ_{0} be unitary matrices and a diagonal matrix, respectively, such that $\operatorname{det}\left(g_{0}\right)=\mathrm{e}^{\mathrm{i}(\theta-\alpha) / 2}, \operatorname{det}\left(h_{0}\right)=\mathrm{e}^{\mathrm{i}(\theta+\alpha) / 2}$, and $\operatorname{det}\left(\Lambda_{0}\right)=r / 2$, where α is an undetermined real number. Then, the matrix $C_{0}=g_{0} \Lambda_{0} h_{0}$ gives a solution to $2 \operatorname{det}(C)=z$. This means that the map 2 det : $M_{1} \rightarrow D$ is surjective. We note here that Λ_{0} is unique for a given z, if we choose μ_{1} to be greater than $\mu_{2}\left(\mu_{1}>\mu_{2} \geqslant 0\right)$. This is because the singular values μ_{1}, μ_{2}, which are subject to $\mu_{1}^{2}+\mu_{2}^{2}=1, \mu_{1}^{2} \mu_{2}^{2}=r^{2} / 4$, are distinct on account of $r<1$. In particular, if $r=0$ then $\Lambda_{0}=\operatorname{diag}(1,0)$. We proceed to explore the inverse image $\operatorname{det}^{-1}(z)$ of $z \in D$. Suppose that for a given $z=r \mathrm{e}^{\mathrm{i} \theta} \in D$, there are two solutions $C_{1}=g_{1} \Lambda h_{1}$ and
$C_{2}=g_{2} \Lambda h_{2}$ such that $\operatorname{det}\left(C_{1}\right)=\operatorname{det}\left(C_{2}\right)=z / 2$. Then, one has $\operatorname{det}\left(g_{1} h_{1}\right)=\operatorname{det}\left(g_{2} h_{2}\right)=\mathrm{e}^{\mathrm{i} \theta}$, if $\operatorname{det} \Lambda \neq 0$. From this, it follows that $\operatorname{det}\left(g_{2}^{-1} g_{1}\right)=\operatorname{det}\left(h_{2} h_{1}^{-1}\right)=\mathrm{e}^{\mathrm{i} \alpha}$, where α is a real number, and where we have used the fact that $g_{k}, h_{k} \in U(2), k=1,2$. Hence, we obtain $\operatorname{det}\left(\mathrm{e}^{-\mathrm{i} \alpha / 2} g_{2}^{-1} g_{1}\right)=\operatorname{det}\left(\mathrm{e}^{-\mathrm{i} \alpha / 2} h_{2} h_{1}^{-1}\right)=1$. This implies that there are $g, h \in S U(2)$ such that $\mathrm{e}^{-\mathrm{i} \alpha / 2} g_{2}^{-1} g_{1}=g^{-1}$ and $\mathrm{e}^{-\mathrm{i} \alpha / 2} h_{2} h_{1}^{-1}=h$. Thus, one has

$$
\begin{equation*}
g_{2}=\mathrm{e}^{-\mathrm{i} \alpha / 2} g_{1} g, \quad h_{2}=\mathrm{e}^{\mathrm{i} \alpha / 2} h h_{1}, \quad g, h \in S U(2) \tag{4.13}
\end{equation*}
$$

Hence, two solutions C_{1} and C_{2} are related by

$$
\begin{equation*}
C_{2}=g_{2} \Lambda h_{2}=g_{1} g g_{1}^{-1} C_{1} h_{1}^{-1} h h_{1} \tag{4.14}
\end{equation*}
$$

where $g_{1} g g_{1}^{-1}, h_{1}^{-1} h h_{1} \in S U(2)$, though $g_{k}, h_{k} \in U(2)$. This equation implies that two solutions, C_{1} and C_{2}, are related by the $S U(2) \times S U(2)$ action. We need to look into this action in detail. As was already proved in (4.5), the $S U(2) \times S U(2)$ action has the isotropy subgroup isomorphic with $U(1)$. This implies that two solutions, C_{1} and C_{2}, are related by the $S U(2) \times S U(2)$ action up to the $U(1)$ action. Put another way, the set of solutions to $2 \operatorname{det}(C)=z$ with $z \neq 0$ is diffeomorphic to $(S U(2) \times S U(2)) / U(1)$, the orbit of $S U(2) \times S U(2)$ through a solution C. We now turn to the case of $\operatorname{det}(\Lambda)=0$. Clearly, for $\Lambda_{0}=\operatorname{diag}(1,0) \in M_{1}$, one has $\operatorname{det}\left(\Lambda_{0}\right)=0$. Suppose that there is another solution $C \in M_{1}$ such that $\operatorname{det}(C)=0$. Then, C is decomposed into $C=g \Lambda_{0} h$ with $g, h \in U(2)$, which means that two solutions, Λ_{0} and C, are related by the $U(2) \times U(2)$ action. For $g, h \in U(2)$, we may take $g^{\prime}=g \mathrm{e}^{\mathrm{i} \theta}$ and $h^{\prime}=h \mathrm{e}^{\mathrm{i} \phi}$ as matrices in $S U(2)$. Then, we obtain

$$
C=g^{\prime} \mathrm{e}^{-\mathrm{i} \theta} \Lambda_{0} \mathrm{e}^{-\mathrm{i} \phi} h^{\prime}=g^{\prime}\left(\begin{array}{cc}
\mathrm{e}^{-\mathrm{i} \theta} & 0 \tag{4.15}\\
0 & \mathrm{e}^{\mathrm{i} \theta}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\mathrm{e}^{-\mathrm{i} \phi} & 0 \\
0 & \mathrm{e}^{\mathrm{i} \phi}
\end{array}\right) h^{\prime} .
$$

Since $g^{\prime} \operatorname{diag}\left(\mathrm{e}^{-\mathrm{i} \theta}, \mathrm{e}^{\mathrm{i} \theta}\right)$ and $\operatorname{diag}\left(\mathrm{e}^{-\mathrm{i} \phi}, \mathrm{e}^{\mathrm{i} \phi}\right) h^{\prime}$ are both in $S U(2)$, the above equation shows that C and Λ_{0} are related by the $S U(2) \times S U(2)$ action. This action is not free. In fact, we can prove that $g_{3} \Lambda_{0} h_{3}=\Lambda_{0}$ with $g_{3}, h_{3} \in S U(2)$ if and only if $g_{3}=h_{3}^{-1}=\operatorname{diag}\left(\mathrm{e}^{\mathrm{i} \chi}, \mathrm{e}^{-\mathrm{i} \chi}\right)$. This implies that $\operatorname{det}^{-1}(0) \cong(S U(2) \times S U(2)) / U(1)$. It then turns out that, for any z with $|z|<1, \operatorname{det}^{-1}(z / 2)$ is diffeomorphic with the orbit of $C \in M_{1}$ along with $2 \operatorname{det}(C)=z$. Thus we have shown that the orbit space for M_{1} is diffeomorphic with D,

$$
\begin{equation*}
(S U(2) \times S U(2)) \backslash M_{1} \cong D \tag{4.16}
\end{equation*}
$$

We have already known that the orbit space for M_{2} is diffeomorphic with $U(1)$ and that $\operatorname{det}(C)=1$ if and only if $C \in M_{2}$. This means that the orbit space $U(1) \cong S^{1}$ is realized as the boundary of D. Thus, we have proved the following:

Theorem 1. The orbit space for the whole state space $M \cong S^{7}$ is homeomorphic with the closed disc:

$$
\begin{equation*}
(S U(2) \times S U(2)) \backslash M \cong \bar{D} \tag{4.17}
\end{equation*}
$$

For the purpose of entanglement measurement, we study the metric on $D \cong(S U(2) \times$ $S U(2)) \backslash M_{1}$ which comes from that on $M_{1} \subset M \cong S^{7}$. The tangent space to the orbit of $S U(2) \times S U(2)$ at $C \in M$ is spanned by

$$
\begin{equation*}
\xi C+C \eta^{T}, \quad(\xi, \eta) \in s u(2) \times s u(2) \tag{4.18}
\end{equation*}
$$

and described as $V_{C}^{L}+V_{C}^{R}$ (see (3.5) for the definition of V_{C}^{L} and V_{C}^{R}). For $C \in M_{1}$, one verifies that

$$
\begin{align*}
V_{C}^{L} \cap V_{C}^{R} & =\left\{\xi C=C \eta^{T} \mid(\xi, \eta) \in \operatorname{su}(2) \times \operatorname{su}(2)\right\} \\
& \cong\left\{\left(\xi_{0},-\xi_{0}\right) \mid \xi_{0}=\operatorname{diag}(\chi,-\chi), \chi \in \mathbf{R}\right\} \\
& \cong \mathcal{G}_{C} \cong u(1), \tag{4.19}
\end{align*}
$$

where \mathcal{G}_{C} denotes the Lie algebra of the isotropy subgroup G_{C} given in (4.6) with $\mu_{1}(C) \neq \mu_{2}(C)$. Hence, one has $\operatorname{dim}\left(V_{C}^{L}+V_{C}^{R}\right)=6-1=5$, the dimension of the orbit $(S U(2) \times S U(2)) / U(1)$ through $C \in M_{1}$. The horizontal subspace at $C \in M_{1}$ is given by $\left(V_{C}^{L}+V_{C}^{R}\right)^{\perp}=H_{C}^{L} \cap H_{C}^{R}$, of which the dimension is $\operatorname{dim}\left(V_{C}^{L}+V_{C}^{R}\right)^{\perp}=7-5=2=$ $\operatorname{dim}\left(H_{C}^{L} \cap H_{C}^{R}\right)$. From (3.13) and (3.14), it follows that

$$
\begin{equation*}
H_{C}^{L} \cap H_{C}^{R}=g\left(H_{\Lambda}^{L} \cap H_{\Lambda}^{R}\right) h=\left\{g X_{1} h, g X_{2} h\right\}, \tag{4.20}
\end{equation*}
$$

where X_{1} and X_{2} are given by (3.15). As was shown in (3.17) and (3.18), the horizontal vectors $g X_{1} h, g X_{2} h$ form an orthonormal system.

The factor space $D \cong(S U(2) \times S U(2)) \backslash M_{1}$ is endowed with a Riemannian metric through the map 2 det : $M_{1} \rightarrow(S U(2) \times S U(2)) \backslash M_{1}$ so that it may be a Riemannian submersion. Put another way, the Riemannian metric $d \sigma^{2}$ on D is defined through

$$
\begin{equation*}
\left\langle\left(2 \operatorname{det}_{*}\right)_{C} X,\left(2 \operatorname{det}_{*}\right)_{C} Y\right\rangle_{2 \operatorname{det}(C)}=\langle X, Y\rangle_{C}, \tag{4.21}
\end{equation*}
$$

where $X, Y \in H_{C}^{L} \cap H_{C}^{R}$. To find the explicit expression of $\mathrm{d} \sigma^{2}$, we have to know the expression of the tangent map det $_{*}$. However, it is easy to find that

$$
\begin{equation*}
\left(\operatorname{det}_{*}\right)_{C} X=\operatorname{det}(C) \operatorname{tr}\left(C^{-1} X\right), \quad X \in T_{C} M \tag{4.22}
\end{equation*}
$$

We now verify that the horizontal subspace $H_{C}^{L} \cap H_{C}^{R}$ at $C \in M_{1}$ maps isomorphically to the tangent space to D at $z=2 \operatorname{det}(C)$, if $0<|z|<1$. A straightforward calculation along with (4.20) provides

$$
\begin{align*}
& U_{1}:=\left(2 \operatorname{det}_{*}\right)_{C}\left(g X_{1} h\right)=\frac{2 \mathrm{i} z}{|z|} \tag{4.23}\\
& U_{2}:=\left(2 \operatorname{det}_{*}\right)_{C}\left(g X_{2} h\right)=-\frac{2 z \sqrt{1-|z|^{2}}}{|z|}, \tag{4.24}
\end{align*}
$$

which shows that $\left(2 \operatorname{det}_{*}\right)_{C}$ is a vector space isomorphism of the horizontal subspace at C with the tangent space to D at $z=2 \operatorname{det} C$ with $0<|z|<1$. Further, from definition (4.21), these vector fields should be orthonormal to each other with respect to the metric $\mathrm{d} \sigma^{2}$ on $D, \mathrm{~d} \sigma^{2}\left(U_{j}, U_{k}\right)=\delta_{j k}, j, k=1,2$. From (4.23) and (4.24), the vectors $U_{k}, k=1,2$, which are a moving frame on D, proves to be expressed, in terms of the polar coordinates, $z=r \mathrm{e}^{\mathrm{i} \theta}$, on D, as

$$
\begin{equation*}
U_{1}=\frac{2}{r} \frac{\partial}{\partial \theta}, \quad U_{2}=-2 \sqrt{1-r^{2}} \frac{\partial}{\partial r} . \tag{4.25}
\end{equation*}
$$

The metric $\mathrm{d} \sigma^{2}$ satisfying $\mathrm{d} \sigma^{2}\left(U_{j}, U_{k}\right)=\delta_{j k}$ are then given by

$$
\begin{equation*}
\mathrm{d} \sigma^{2}=\frac{1}{4}\left(\frac{\mathrm{~d} r^{2}}{1-r^{2}}+r^{2} \mathrm{~d} \theta^{2}\right) \tag{4.26}
\end{equation*}
$$

Theorem 2. The open disc D, which is realized as the orbit space $(S U(2) \times S U(2)) \backslash M_{1}$, is endowed with the Riemannian metric given in (4.26).

5. The map $S^{4} \rightarrow \bar{D}$

So far we have studied the maps $S^{7} \rightarrow S^{4}$ and $S^{7} \rightarrow \bar{D}$. We are now interested in the map $S^{4} \rightarrow \bar{D}$. Recall that S^{4} is realized by $\left(C C^{*}, \operatorname{det} C\right)$ as in (3.2) and that the variables w and t are defined through (3.3) and the variable z by $z=2 \operatorname{det} C$. Since $C C^{*}$ and $\operatorname{det} C$ are invariant under the right $S U(2)$ action, the variables $w, z \in \mathbf{C}$ and $t \in \mathbf{R}$ are also invariant
under the right $S U(2)$ action, and therefore the quotient space S^{4} is described in terms of these invariants.

Though $z=2 \operatorname{det} C$ is invariant under the left $S U(2)$ action as well, w and t are not. We now wish to study the left $S U(2)$ action on the variables w and t. The left $S U(2)$ action on M induces the adjoint action on $C C^{*} ; C C^{*} \longmapsto g C C^{*} g^{-1}$, which gives rise to an action on $(w, t) \in \mathbf{C} \times \mathbf{R} \cong \mathbf{R}^{3}$. First we take $g=\left(\begin{array}{cc}\mathrm{e}^{i \theta} & 0 \\ 0 & \mathrm{e}^{-i \theta}\end{array}\right)$, a one-parameter subgroup of $S U(2)$. A straightforward calculation provides

$$
\left(\begin{array}{cc}
\mathrm{e}^{\mathrm{i} \theta} & 0 \tag{5.1}\\
0 & \mathrm{e}^{-\mathrm{i} \theta}
\end{array}\right)\left(\begin{array}{cc}
1+t & w \\
\bar{w} & 1-t
\end{array}\right)\left(\begin{array}{cc}
\mathrm{e}^{-\mathrm{i} \theta} & 0 \\
0 & \mathrm{e}^{\mathrm{i} \theta}
\end{array}\right)=\left(\begin{array}{cc}
1+t & \mathrm{e}^{2 \mathrm{i} \theta} w \\
\mathrm{e}^{-2 i \theta} \bar{w} & 1-t
\end{array}\right)
$$

which defines the map

$$
\begin{equation*}
w \mapsto \mathrm{e}^{2 i \theta} w, \quad t \mapsto t \tag{5.2}
\end{equation*}
$$

On setting $w=u+i v$, this transformation is expressed as a rotation about the t-axis,

$$
\left(\begin{array}{l}
u \tag{5.3}\\
v \\
t
\end{array}\right) \longmapsto\left(\begin{array}{ccc}
\cos 2 \theta & -\sin 2 \theta & 0 \\
\sin 2 \theta & \cos 2 \theta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
u \\
v \\
t
\end{array}\right) .
$$

In a similar manner, with $g=\left(\begin{array}{cc}\cos \theta & \operatorname{isin} \theta \\ \mathrm{i} \sin \theta & \cos \theta\end{array}\right)$ and $g=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$, we can associate a rotation about the u-axis,

$$
\left(\begin{array}{l}
u \tag{5.4}\\
v \\
t
\end{array}\right) \longmapsto\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos 2 \theta & -\sin 2 \theta \\
0 & \sin 2 \theta & \cos 2 \theta
\end{array}\right)\left(\begin{array}{l}
u \\
v \\
t
\end{array}\right),
$$

and a rotation about the v-axis,

$$
\left(\begin{array}{l}
u \tag{5.5}\\
v \\
t
\end{array}\right) \longmapsto\left(\begin{array}{ccc}
\cos 2 \theta & 0 & -\sin 2 \theta \\
0 & 1 & 0 \\
\sin 2 \theta & 0 & \cos 2 \theta
\end{array}\right)\left(\begin{array}{l}
u \\
v \\
t
\end{array}\right),
$$

respectively.
Put together, the rotations (5.3), (5.4), and (5.5) generate any rotation in the space $\mathbf{C} \times \mathbf{R} \cong \mathbf{R}^{3}$, the (u, v, t)-space. Thus, we have shown that the left $S U(2)$ action on M gives rise to the rotation group $S O(3)$ acting on the (u, v, t)-space.

Since S^{4} is given by $|z|^{2}+|w|^{2}+t^{2}=1$ in $\mathbf{C}^{2} \times \mathbf{R}$, and since the induced $S O(3)$ action leaves both z and $|w|^{2}+t^{2}=u^{2}+v^{2}+t^{2}$ invariant, the $S O(3)$ acts indeed on S^{4}. We now look into the $S O(3)$ action on S^{4}. If $|z| \neq 1$, then one has a two-sphere $S^{2}\left(\sqrt{1-|z|^{2}}\right)$ of radius $\sqrt{1-|z|^{2}}$ in S^{4} for each fixed $z \in D$. Hence, the punctured sphere $S^{4}-\{|z|=1\}$ is decomposed into

$$
\begin{equation*}
S^{4}-\{|z|=1\}=\bigsqcup_{z \in D}\{z\} \times S^{2}\left(\sqrt{1-|z|^{2}}\right) \cong D \times S^{2} \tag{5.6}
\end{equation*}
$$

Since the $S O(3)$ acts transitively on each factor space $S^{2}\left(\sqrt{1-|z|^{2}}\right)$ and leaves D invariant, we obtain the quotient space

$$
\begin{equation*}
S O(3) \backslash\left(S^{4}-\{|z|=1\}\right) \cong D \tag{5.7}
\end{equation*}
$$

If we set $|z|=1$ in S^{4}, we have a circle $|z|=1$ with $(w, t)=0$. The $S O$ (3) leaves invariant z and $(w, t)=0$, so that one has

$$
\begin{equation*}
S O(3) \backslash\left(S^{4} \cap\{|z|=1\}\right) \cong\left\{z \in \mathbf{C}||z|=1\} \cong S^{1}\right. \tag{5.8}
\end{equation*}
$$

Equations (5.7) and (5.8) are put together to show that the total quotient space is homeomorphic to \bar{D},

$$
\begin{equation*}
S O(3) \backslash S^{4} \cong \bar{D}=\{z \in \mathbf{C}| | z \mid \leqslant 1\} \tag{5.9}
\end{equation*}
$$

Thus, we have the following:
Theorem 3. The Hopf bundle $S^{7} \rightarrow S^{4}$ is followed by the map $S^{4} \rightarrow \bar{D}$ to accomplish the following diagram,

$$
\begin{array}{lll}
S^{7} & \rightarrow & S^{4} \\
\downarrow & \swarrow & \tag{5.10}\\
\bar{D} & &
\end{array}
$$

where the maps indicated by the down-arrow and by the right-arrow have been studied in sections 4 and 3 (in the name of π_{R}), respectively, and where the map assigned by the $S W$-arrow denotes the projection, $S^{4} \rightarrow S O(3) \backslash S^{4} \cong \bar{D}$, given in (5.9).

In conclusion of this section, we study the metric on S^{4} which is defined from that on M, and further investigate how the metrics on S^{4} and on D are related to each other. We start with the eigenvalues of the matrix $C C^{*}$. From $\left|C C^{*}-\lambda I_{2}\right|=0$, we find that they are given by

$$
\begin{equation*}
\lambda_{1}=\frac{1}{2}\left(1+\sqrt{t^{2}+|w|^{2}}\right), \quad \lambda_{2}=\frac{1}{2}\left(1-\sqrt{t^{2}+|w|^{2}}\right) \tag{5.11}
\end{equation*}
$$

Hence, $C C^{*}$ is put in the form

$$
C C^{*}=\frac{1}{2}\left(\begin{array}{cc}
1+t & w \tag{5.12}\\
\bar{w} & 1-t
\end{array}\right)=g\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) g^{*}
$$

where $g \in U(2)$. From this, it follows that $g=I_{2}$ if and only if $w=0$ and $t>0$. We take S^{4} as realized by $|z|^{2}+|w|^{2}+t^{2}=1$ in $\mathbf{C}^{2} \times \mathbf{R}$ or by $x^{2}+y^{2}+u^{2}+v^{2}+t^{2}=1$ in \mathbf{R}^{5} with $z=x+i y$.

Let ρ denote the map $C \mapsto C C^{*}$. Then, the differential of ρ is given by

$$
\begin{equation*}
\rho_{*}(X)=X C^{*}+C X^{*}, \quad X \in T_{C} M \tag{5.13}
\end{equation*}
$$

The differential of the map $\pi_{R}: M \rightarrow S^{4}$ is then given by $\pi_{R *}=\left(\rho_{*}, \operatorname{det}_{*}\right)$, where det_{*} is already given in (4.22). Like (4.21), a metric on S^{4} is defined through

$$
\begin{equation*}
\left\langle\left(\pi_{R *}\right)_{C} X,\left(\pi_{R_{*}}\right)_{C} Y\right\rangle_{\pi_{R}(C)}=\langle X, Y\rangle_{C}, \quad X, Y \in H_{C}^{R} \tag{5.14}
\end{equation*}
$$

We are to carry horizontal vectors in H_{C}^{R} to tangent vectors to S^{4} by $\pi_{R *}$. Recall that the horizontal subspace H_{Λ}^{R} at $\Lambda=\operatorname{diag}\left(\mu_{1}, \mu_{2}\right)$ is given by (3.13) and H_{C}^{R} at $C=g \Lambda h$ by (3.16). There are four linearly independent vectors $g X_{k} h$ in H_{C}^{R}, for which we are going to calculate $\pi_{R *}\left(g X_{k} h\right), k=1, \ldots, 4$. We have already found out $\left(\operatorname{det}_{*}\right)_{C}\left(g X_{1} h\right)$ and $\left(\operatorname{det}_{*}\right)_{C}\left(g X_{2} h\right)$ in (4.23) and (4.24), respectively. Further, it is easy to verify that

$$
\begin{equation*}
\left(\operatorname{det}_{*}\right)_{C}\left(g X_{3} h\right)=\left(\operatorname{det}_{*}\right)_{C}\left(g X_{4} h\right)=0 \tag{5.15}
\end{equation*}
$$

The remaining task to do is to calculate $\left(\rho_{*}\right)_{C}\left(g X_{k} h\right), k=1, \ldots, 4$. It is a matter of straightforward calculation to obtain

$$
\begin{align*}
& \left(\rho_{*}\right)_{C}\left(g X_{1} h\right)=0, \tag{5.16a}\\
& \left(\rho_{*}\right)_{C}\left(g X_{2} h\right)=|z| g\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) g^{*}, \tag{5.16b}
\end{align*}
$$

$$
\begin{align*}
& \left(\rho_{*}\right)_{C}\left(g X_{3} h\right)=g\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) g^{*} \tag{5.16c}\\
& \left(\rho_{*}\right)_{C}\left(g X_{4} h\right)=-g\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) g^{*} \tag{5.16d}
\end{align*}
$$

In view of (5.12), the right-hand sides of (5.16b), (5.16c), and (5.16d) are regarded as tangent vectors to \mathcal{H}_{1} at $\frac{1}{2} \operatorname{Ad}_{g}\left(\begin{array}{cc}1+|t| & 0 \\ 0 & 1-|t|\end{array}\right)$ in the directions of $\left(\operatorname{Ad}_{g}\right)_{*}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\operatorname{Ad}_{g}\right)_{*}\left(\begin{array}{cc}0 & -\mathrm{i} \\ \mathrm{i} & 0\end{array}\right)$, $\operatorname{and}\left(\operatorname{Ad}_{g}\right)_{*}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, respectively, where $\left(\operatorname{Ad}_{g}\right)_{*}$ denotes the differential of $\operatorname{Ad} g$. In terms of the local coordinates (u, v, t) of $\mathcal{H}_{1} \cong \mathbf{R}^{3}$, these tangent vectors are then expressed as

$$
\begin{align*}
& \left(\rho_{*}\right)_{C}\left(g X_{2} h\right)=2|z|\left(\operatorname{Ad}_{g}\right)_{*}\left(\frac{\partial}{\partial t}\right)_{q} \tag{5.17a}\\
& \left(\rho_{*}\right)_{C}\left(g X_{3} h\right)=-2\left(\operatorname{Ad}_{g}\right)_{*}\left(\frac{\partial}{\partial v}\right)_{q} \tag{5.17b}\\
& \left(\rho_{*}\right)_{C}\left(g X_{4} h\right)=-2\left(\operatorname{Ad}_{g}\right)_{*}\left(\frac{\partial}{\partial u}\right)_{q} \tag{5.17c}
\end{align*}
$$

respectively, where $q=(0,0, t)$ with $t>0$. It should be noted that Ad_{g} defines the $S O$ (3) action on $\mathcal{H}_{1} \cong \mathbf{R}^{3}$.

We here recall that if $|z| \neq 1$, then $S^{4}-\{|z|=1\}$ is decomposed as in (5.6). In view of this decomposition, we are to treat the metric induced on the sphere $S^{2}\left(\sqrt{1-|z|^{2}}\right)$. When restricted to $S^{2}\left(\sqrt{1-|z|^{2}}\right)$, definition (5.14) provides

$$
\begin{equation*}
\left\langle\left(\rho_{*}\right)_{C}\left(g X_{k} h\right),\left(\rho_{*}\right)_{C}\left(g X_{\ell} h\right)\right\rangle=\left\langle g X_{k} h, g X_{\ell} h\right\rangle_{C}, \quad k, \ell=3,4 \tag{5.18}
\end{equation*}
$$

where the brackets in the left-hand side denote the metric on $S^{2}\left(\sqrt{1-|z|^{2}}\right)$. We have here to note that $\left(\rho_{*}\right)_{C}\left(g X_{2} h\right)$ is normal to the sphere $S^{2}\left(\sqrt{1-|z|^{2}}\right)$, so that it makes no contribution to determining the metric on $S^{2}\left(\sqrt{1-|z|^{2}}\right)$. Since $\left\langle g X_{k} h, g X_{\ell} h\right\rangle=\left\langle X_{k}, X_{\ell}\right\rangle$, as is easily seen, equations $(5.17 b),(5.17 c)$ and (5.18) are put together to provide
$\left\langle-2\left(\operatorname{Ad}_{g}\right)_{*}\left(\frac{\partial}{\partial v}\right)_{q},-2\left(\operatorname{Ad}_{g}\right)_{*}\left(\frac{\partial}{\partial u}\right)_{q}\right\rangle=\left\langle-2\left(\frac{\partial}{\partial v}\right)_{q},-2\left(\frac{\partial}{\partial u}\right)_{q}\right\rangle$, etc,
where $q=(0,0, t)$ with $t=\sqrt{1-|z|^{2}}$. This implies that the metric on $S^{2}\left(\sqrt{1-|z|^{2}}\right)$ should be $S O(3)$ invariant and determined by the inner product on the tangent space at q. Since $\left\langle g X_{k} h, g X_{\ell} h\right\rangle=\delta_{k \ell}$, we obtain
$\left\langle\left(\frac{\partial}{\partial v}\right)_{q},\left(\frac{\partial}{\partial u}\right)_{q}\right\rangle=0, \quad\left\langle\left(\frac{\partial}{\partial u}\right)_{q},\left(\frac{\partial}{\partial u}\right)_{q}\right\rangle=\left\langle\left(\frac{\partial}{\partial v}\right)_{q},\left(\frac{\partial}{\partial v}\right)_{q}\right\rangle=\frac{1}{4}$.
Since the metric defined on the sphere $S^{2}\left(\sqrt{1-|z|^{2}}\right)$ is $S O(3)$ invariant, it turns out to be given by

$$
\begin{equation*}
\frac{1}{4}\left(1-|z|^{2}\right) \mathrm{d} \Omega^{2}, \quad \mathrm{~d} \Omega^{2}:=\mathrm{d} \phi^{2}+\sin ^{2} \phi \mathrm{~d} \psi^{2} \tag{5.21}
\end{equation*}
$$

where $\mathrm{d} \Omega^{2}$ denotes the canonical metric on the unit sphere S^{2}. The above metric is also induced on $S^{2}\left(\sqrt{1-|z|^{2}}\right)$ from the metric $\frac{1}{4}\left(\mathrm{~d} u^{2}+\mathrm{d} v^{2}+\mathrm{d} t^{2}\right)$ by setting $u+\mathrm{i} v=R \mathrm{e}^{i \psi} \sin \phi, t=R \cos \phi$ with $R=\sqrt{1-|z|^{2}}$.

So far we have obtained the metric on the factor space S^{2} of $S^{4}-\{|z|=1\} \cong D \times S^{2}$. The metric defined on the factor space D has been already obtained in (4.26). Since the systems
$\left\{g X_{1} h, g X_{2} h\right\}$ and $\left\{g X_{3}, h, g X_{4} h\right\}$ are orthogonal to each other and since $\left\{g X_{1} h, g X_{2} h\right\}$ and $\left\{g X_{3} h, g X_{4} h\right\}$ determine the metrics on D and on S^{2}, respectively, these metrics are put together to provide the metric on $S^{4}-\{|z|=1\}$,

$$
\begin{equation*}
\mathrm{d} s^{2}=\frac{1}{4}\left(\frac{\mathrm{~d} r^{2}}{1-r^{2}}+r^{2} \mathrm{~d} \theta^{2}\right)+\frac{1}{4}\left(1-r^{2}\right) \mathrm{d} \Omega^{2} . \tag{5.22}
\end{equation*}
$$

We note here that this metric is induced on S^{4} from the flat metric $\frac{1}{4}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} u^{2}+\mathrm{d} v^{2}+\mathrm{d} t^{2}\right)$ on \mathbf{R}^{5} through

$$
\begin{equation*}
x+\mathrm{i} y=r \mathrm{e}^{i \theta}, \quad u+\mathrm{i} v=R \mathrm{e}^{i \psi} \sin \phi, \quad t=R \cos \phi, \quad r^{2}+R^{2}=1 \tag{5.23}
\end{equation*}
$$

Thus, the metric given in (5.22) extends to the whole sphere S^{4}, as is well known.
It was pointed out in [5] that part of (5.22),

$$
\begin{equation*}
\frac{1}{4}\left(\frac{\mathrm{~d} r^{2}}{1-r^{2}}+\left(1-r^{2}\right) \mathrm{d} \Omega^{2}\right) \tag{5.24}
\end{equation*}
$$

defines the Bures metric on the space of density matrices, i.e., the space of $C C^{*}$ with $C \in M$.

6. Entanglement measurement for two-qubit

We are now in a position to describe the factor space $G \backslash M$ with $G=U(1) \times S U(2) \times S U(2)$. Since $U(1)$ acts on \bar{D} in the manner, $z \mapsto \mathrm{e}^{\mathrm{i} \theta} z$, we obtain

$$
\begin{equation*}
G \backslash M \cong U(1) \backslash \bar{D} \cong[0,1] \tag{6.1}
\end{equation*}
$$

where the right-hand side denotes the closed interval. As we anticipated in section 2, the concurrence is defined on $G \backslash M$ and serves also as a coordinate of the closed interval, $r=|z|=|2 \operatorname{det} C|$. Since the end points $r=0$ and $r=1$ are associated with the separable states and the maximally entangled states, respectively, we are allowed to take any monotonically increasing function of r as a measure of entanglement. A natural measure is defined through a natural metric on $G \backslash M$. The open interval $(0,1)$ is endowed with the metric determined by that on D. In fact, from (4.26), one obtains

$$
\begin{equation*}
\mathrm{d} \tau^{2}=\frac{1}{4} \frac{\mathrm{~d} r^{2}}{1-r^{2}} \tag{6.2}
\end{equation*}
$$

The length of the interval $r_{1} \leqslant r \leqslant r_{2}$ with respect to $\mathrm{d} \tau^{2}$ is then given by

$$
\begin{equation*}
\int_{r_{1}}^{r_{2}} \mathrm{~d} \tau=\frac{1}{2} \int_{r_{1}}^{r_{2}} \frac{\mathrm{~d} r}{\sqrt{1-r^{2}}}=\frac{1}{2}\left(\sin ^{-1} r_{2}-\sin ^{-1} r_{1}\right) \tag{6.3}
\end{equation*}
$$

where $\sin ^{-1}$ denotes the arcsine with the range $[-\pi / 2, \pi / 2]$. Letting $r_{1} \rightarrow 0$, we observe that $r=|2 \operatorname{det} C|$ is distant from 0 by $\frac{1}{2} \sin ^{-1} r$. Summing up the above, we obtain the following:

Theorem 4. The orbit space $G \backslash M$ with $G=U(1) \times S U(2) \times S U(2)$ is homeomorphic with the closed interval $[0,1]$. The open subset $(0,1)$ is endowed with the Riemannian metric given by (6.2), with respect to which r is distant from 0 by $\frac{1}{2} \sin ^{-1} r$, which means that a two-qubit system C with concurrence $r=|2 \operatorname{det} C|$ is distant from the separable states by $\frac{1}{2} \sin ^{-1} r$.

One of well-known measures of entanglement is the von Neumann entropy, which is defined to be

$$
\begin{equation*}
S(C)=-\operatorname{tr}\left(C C^{*} \log \left(C C^{*}\right)\right) \tag{6.4}
\end{equation*}
$$

and written also as

$$
\begin{equation*}
S(C)=-\sum_{k} \lambda_{k} \log \lambda_{k} \tag{6.5}
\end{equation*}
$$

where λ_{k} are the eigenvalues of $C C^{*}$. Since the $S(C)$ is invariant under the $U(1) \times S U(2) \times$ $S U(2)$ action, it projects to a function on the closed interval [0,1] (see (6.1)). In fact, from (6.5) together with $\lambda_{1}+\lambda_{2}=1$ and $\lambda_{1} \lambda_{2}=r^{2} / 4$, one obtains a monotonically increasing function on $[0,1]$,
$\widetilde{S}(r)=-\frac{1}{2}\left(1+\sqrt{1-r^{2}}\right) \log \frac{1}{2}\left(1+\sqrt{1-r^{2}}\right)-\frac{1}{2}\left(1-\sqrt{1-r^{2}}\right) \log \frac{1}{2}\left(1-\sqrt{1-r^{2}}\right)$.

7. Three- and more-qubit concurrence

In this section, we make some comments on further study of entanglement measurement. The entanglement for three- and more-qubit systems has been studied in many ways [7, 9-17]. Let

$$
\begin{equation*}
\Psi=\sum_{j, k, \ell \in\{0,1\}} c_{j k \ell} \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{\ell} \tag{7.1}
\end{equation*}
$$

be a three-qubit state, where $\sum_{j, k, \ell}\left|c_{j k \ell}\right|^{2}=1$. Let A be a binary integer variable ranging over $\{00,01,10,11\}$. Then the above state is rewritten as

$$
\begin{equation*}
\Psi=\sum_{j, A} c_{j A} e_{j} \otimes e_{A} \tag{7.2}
\end{equation*}
$$

where e_{A} denotes $e_{k} \otimes e_{\ell}$. Put another way, the three-qubit Hibert space $\mathbf{C}^{2} \otimes \mathbf{C}^{2} \otimes \mathbf{C}^{2}$ is identified with $\mathbf{C}^{2} \otimes \mathbf{C}^{4}$. We denote the coefficient matrix of (7.2) by

$$
C=\left(c_{j A}\right)=\left(\begin{array}{llll}
c_{000} & c_{001} & c_{010} & c_{011} \tag{7.3}\\
c_{100} & c_{101} & c_{110} & c_{111}
\end{array}\right) \in \mathbf{C}^{2 \times 4}
$$

where $\mathbf{C}^{2 \times 4}$ is the linear space of 2×4 complex matrices. Since the state Ψ is normalized, the C is subject to the constraint $\operatorname{tr}\left(C C^{*}\right)=1$. Now, the state Ψ is separable in the sense that Ψ is a tensor product of the first one-qubit state and the last two-qubit state, if and only if C is of rank 1. On account of the constraint $\operatorname{tr}\left(C C^{*}\right)=1$, the rank of $C C^{*}$ is 1 or 2 , so that $C C^{*}$ is of rank 1 if and only if $\operatorname{det}\left(C C^{*}\right)=0$. Since C and $C C^{*}$ has the same rank, we may take $\operatorname{det}\left(C C^{*}\right)$ as a measure of entanglement. We note here that if $C \in \mathbf{C}^{2 \times 2}$ this quantity reduces to $|\operatorname{det} C|^{2}$, the square of the two-qubit concurrence up to a constant factor.

We now show that the $\operatorname{det}\left(C C^{*}\right)$ is invariant under the $U(2) \times U(4)$ action, where $U(2) \times U(4)$ acts on the state space by

$$
\begin{equation*}
(U \otimes V) \Psi=\sum_{i, j, A, B} u_{j i} c_{i A} v_{B A} e_{j} \otimes e_{B} \tag{7.4}
\end{equation*}
$$

and where $U=\left(u_{i j}\right) \in U(2), V=\left(v_{A B}\right) \in U(4)$. Hence, the matrix C defined in (7.3) transforms according to

$$
\begin{equation*}
C \mapsto U C V^{T} . \tag{7.5}
\end{equation*}
$$

It is now easy to see that $\operatorname{det}\left(C C^{*}\right)$ is invariant under the $U(2) \times U(4)$ action. Hence, $\operatorname{det}\left(C C^{*}\right)$ may serve as (squared) concurrence (up to a constant factor) between one-qubit and the other two-qubit.

If Ψ is separable in the sense discussed above, there exist non-vanishing vectors $\left(c_{j}\right) \in \mathbf{C}^{2}$ and $\left(d_{A}\right) \in \mathbf{C}^{4}$ such that $c_{j A}=c_{j} d_{A}$. Then, we may further treat the quantity $\left.\operatorname{det}\left(\begin{array}{ll}d_{00} & d_{01} \\ d_{10} & d_{11}\end{array}\right) \right\rvert\,$ as a concurrence. If this quantity vanishes further, the state Ψ is fully separable in the sense that Ψ is a tensor product of three one-qubit states.

We now put $\operatorname{det}\left(C C^{*}\right)$ in another form. Let $\boldsymbol{c}_{i}=\sum_{A} c_{i A} \boldsymbol{e}_{A} \in \mathbf{C}^{4}$. Then, the state Ψ is separable in the sense that Ψ is a tensor product of a one-qubit state and a two-qubit state, if
and only if $\boldsymbol{c}_{i}, i=0,1$, are linearly dependent. It is well known that the vectors $\boldsymbol{c}_{i}, i=0,1$, are linearly dependent, if and only if

$$
\left\|\boldsymbol{c}_{0} \wedge \boldsymbol{c}_{1}\right\|^{2}=\operatorname{det}\left(\begin{array}{ll}
\left\langle\boldsymbol{c}_{0}, \boldsymbol{c}_{0}\right\rangle & \left\langle\boldsymbol{c}_{0}, \boldsymbol{c}_{1}\right\rangle \tag{7.6}\\
\left\langle\boldsymbol{c}_{1}, \boldsymbol{c}_{0}\right\rangle & \left\langle\boldsymbol{c}_{1}, \boldsymbol{c}_{1}\right\rangle
\end{array}\right)=0
$$

where the first equality of the above equation gives the definition of the squared norm of the two-vector $c_{0} \wedge c_{1} \in \bigwedge^{2} \mathbf{C}^{4}$. Thus, $\left\|\boldsymbol{c}_{0} \wedge \boldsymbol{c}_{1}\right\|$ can serve as a concurrence between one-qubit and the other two-qubit [9,16]. (Comments on this will be given in the next section.) This quantity is expressed in terms of $c_{i A}$ as

$$
\left\|\boldsymbol{c}_{0} \wedge \boldsymbol{c}_{1}\right\|^{2}=\sum_{A<B}\left|\operatorname{det}\left(\begin{array}{ll}
c_{0 A} & c_{1 A} \tag{7.7}\\
c_{0 B} & c_{1 B}
\end{array}\right)\right|^{2},
$$

and further proves to be equal to $\operatorname{det}\left(C C^{*}\right)$,

$$
\operatorname{det}\left(C C^{*}\right)=\operatorname{det}\left(\begin{array}{ll}
\left\langle\boldsymbol{c}_{0}, \boldsymbol{c}_{0}\right\rangle & \left\langle\boldsymbol{c}_{1}, \boldsymbol{c}_{0}\right\rangle \tag{7.8}\\
\left\langle\boldsymbol{c}_{0}, \boldsymbol{c}_{1}\right\rangle & \left\langle\boldsymbol{c}_{1}, \boldsymbol{c}_{1}\right\rangle
\end{array}\right)=\left\|\boldsymbol{c}_{0} \wedge \boldsymbol{c}_{1}\right\|^{2} .
$$

If a three-qubit state Ψ is put in the form

$$
\begin{equation*}
\Psi=\sum_{A, \ell} c_{A \ell} \boldsymbol{e}_{A} \otimes \boldsymbol{e}_{\ell} \tag{7.9}
\end{equation*}
$$

in place of (7.2), the same argument applies to the coefficient matrix $\left(c_{A j}\right) \in \mathbf{C}^{4 \times 2}$. One can group the first and the third factors to form another coefficient matrix, to which a similar argument applies.

For four-qubit systems, we can put a state

$$
\begin{equation*}
\Psi=\sum_{j, k, \ell, m} c_{j k \ell_{m}} \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{\ell} \otimes \boldsymbol{e}_{m} \tag{7.10}
\end{equation*}
$$

in different forms,

$$
\begin{align*}
& \Psi=\sum_{j, K} c_{j K} \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{K}, \tag{7.11}\\
& \Psi=\sum_{A, B} c_{A B} \boldsymbol{e}_{A} \otimes \boldsymbol{e}_{B}, \tag{7.12}
\end{align*}
$$

where

$$
\begin{align*}
& e_{K}=e_{k} \otimes e_{\ell} \otimes e_{m}, \quad K \in\{000,001, \ldots, 111\} \tag{7.13}\\
& e_{A}=e_{j} \otimes e_{k}, \quad e_{B}=e_{\ell} \otimes e_{m}, \quad A, B \in\{00, \ldots, 11\} \tag{7.14}
\end{align*}
$$

We associate (7.11) and (7.12) with the coefficient matrices

$$
\begin{equation*}
F=\left(c_{j K}\right) \in \mathbf{C}^{2 \times 8}, \quad G=\left(c_{A B}\right) \in \mathbf{C}^{4 \times 4} \tag{7.15}
\end{equation*}
$$

respectively. Since Ψ is normalized, the matrices F and G are subject to the constraints

$$
\begin{equation*}
\operatorname{tr}\left(F F^{*}\right)=1, \quad \operatorname{tr}\left(G G^{*}\right)=1 \tag{7.16}
\end{equation*}
$$

respectively.
In the case of (7.11), the state is separable in the sense that Ψ is a tensor product of a one-qubit state and the other three-qubit state if and only if F is of rank 1 . Since $F F^{*}$ is of rank 1 or $2, F F^{*}$ is of rank 1 if and only if $\operatorname{det}\left(F F^{*}\right)=0$. As F and $F F^{*}$ has the same rank, the quantity $\operatorname{det}\left(F F^{*}\right)$ serves as a measure of entanglement, which is invariant under
the $U(2) \times U(8)$ action on the state space, as is verified in the same manner as that for the three-qubit case (7.5).

In the case of (7.12), the state is separable in the sense that Ψ is a tensor product of a two-qubit state and another two-qubit state, if and only if the coefficient matrix $G=\left(c_{A B}\right)$ is of rank 1. Since G is subject to the constraint $\operatorname{tr}\left(G G^{*}\right)=1$, the sum of eigenvalues of $G G^{*}$ is equal to 1 . Hence, $G G^{*}$ is of rank 1 , if and only if one of the eigenvalues of the positive semi-definite matrix $G G^{*}$ is 1 , for which a necessary and sufficient condition is that $\operatorname{det}\left(I_{4}-G G^{*}\right)=0$, where I_{4} denotes the 4×4 unit matrix. Thus, we may take $\operatorname{det}\left(I_{4}-G G^{*}\right)$ as a measure of entanglement, which are invariant under the $U(4) \times U(4)$ action on the state space. In summary, we may take

$$
\begin{equation*}
\operatorname{det}\left(F F^{*}\right) \quad \text { and } \quad \operatorname{det}\left(I_{4}-G G^{*}\right) \tag{7.17}
\end{equation*}
$$

as measures of entanglement between one-qubit and the other three-qubit, and between twoqubit and another two-qubit, respectively.

Measures of entanglement for five- and more-qubit systems will be able to be defined in the same manner. First, we form a coefficient matrix $H \in \mathbf{C}^{2} \times 2^{m}$, where $\ell+m=n$ for n-qubit systems. Then, we describe the condition for H to be of rank 1 . If $2<\ell \leqslant m$, the condition takes the form $\operatorname{det}\left(I-H H^{*}\right)=0$, where I denotes the $2^{\ell} \times 2^{\ell}$ unit matrix. If $2=\ell \leqslant m$, the condition is written as $\operatorname{det}\left(H H^{*}\right)=0$. Thus, $\operatorname{det}\left(I-H H^{*}\right)$ or $\operatorname{det}\left(H H^{*}\right)=0$ serve as measures of entanglement between ℓ-qubit and the other m-qubit, according to whether $2<\ell \leqslant m$ or $2=\ell \leqslant m$.

Measures of entanglement are studied in [15, 17] on the basis of bipartite partition $\mathbf{C}^{2^{\ell}} \otimes \mathbf{C}^{2^{m}}$. However, the measure of the form $\operatorname{det}\left(I-H H^{*}\right)$, which is easy to use, does not seem to have been mentioned.

8. Concluding remarks and comments

We have shown that for a two-qubit state C with concurrence $r=|2 \operatorname{det} C|$ is distant from the separable states by $\frac{1}{2} \sin ^{-1} r$ with respect to the naturally defined Riemannian metric. After having realized this fact, we can point out that $\frac{1}{2} \sin ^{-1} r$ happens to be equal to the Schmidt angle mentioned in [4]. The geometric property of three- and more-qubit concurrence is reserved in future study.

In what follows, we make comments on three- and more-qubit concurrence, and give examples of the measures (7.17). We take up $\operatorname{det}\left(C C^{*}\right)$ for a three-qubit. We denote equation (7.1) in the Dirac notation by $|\Psi\rangle=\sum c_{j k \ell}|i k \ell\rangle$. The reduced density matrix ρ_{A}, i.e., the partial trace of $|\Psi\rangle\langle\Psi|$ over qubits B and C, is expressed as

$$
\begin{equation*}
\rho_{A}=\operatorname{tr}_{B C}|\Psi\rangle\langle\Psi|=\sum_{\ell, m} \sum_{j, k} c_{\ell j k} \overline{c_{m j k}}|\ell\rangle\langle m|, \tag{8.1}
\end{equation*}
$$

which corresponds to the 2×2 matrix $\overline{C C^{*}}$. In contrast with this, the reduced density matrix $\rho_{B C}$, i.e., the partial trace of $|\Psi\rangle\langle\Psi|$ over qubit A, is associated with the 4×4 matrix $\overline{C^{*} C}$. In [9], $2 \sqrt{\operatorname{det} \rho_{A}}$ is defined to be the concurrence between qubit A and the pair $B C$, and denoted by $C_{A(B C)}$. Since $\operatorname{det}\left(C C^{*}\right)$ is real-valued, one has $\operatorname{det}\left(C C^{*}\right)=\operatorname{det} \rho_{A}$, which shows that $\operatorname{det}\left(C C^{*}\right)$ is consistent with the concurrence defined in [9] as measures of entanglement. As for the matrix $C^{*} C$, since $\operatorname{rank}\left(C^{*} C\right) \leqslant 2$, the quantity $\operatorname{det}\left(C^{*} C\right)$ vanishes identically, so that it cannot serve as a measure of entanglement. However, in [9], they deal with $C^{*} C$ by using the quantity $\operatorname{tr}\left(C^{*} C \overline{C^{*} C}\right)$, which was defined to be $\operatorname{tr}\left(\rho_{B C} \widetilde{\rho}_{B C}\right)$ in their notation. In our notation, we have

$$
\begin{equation*}
\operatorname{tr}\left(C^{*} C \overline{C^{*} C}\right)=\left|\left(\boldsymbol{c}_{0}, \boldsymbol{c}_{0}\right)\right|^{2}+2\left|\left(\boldsymbol{c}_{0}, \boldsymbol{c}_{1}\right)\right|^{2}+\left|\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{1}\right)\right|^{2} \tag{8.2}
\end{equation*}
$$

where $($,$) denotes the scalar product defined by (\boldsymbol{a}, \boldsymbol{b})=\sum_{i=1}^{4} a_{i} b_{i}$.
In [16], Lévay uses the 2×2 matrices

$$
C_{0}=\left(\begin{array}{cc}
c_{000} & c_{001} \tag{8.3}\\
c_{010} & c_{011}
\end{array}\right), \quad C_{1}=\left(\begin{array}{cc}
c_{100} & c_{101} \\
c_{110} & c_{111}
\end{array}\right)
$$

in place of the vectors $c_{i}, i=0,1$, and introduce the Plücker coordinates to express the complex plane spanned by C_{0} and C_{1} in the complex linear space $\mathbf{C}^{2 \times 2}$. The quantities which appear in the right-hand side of (7.7) and denoted by $\operatorname{det}(*)$ with labels A, B serve as the Plücker coordinates for the complex plane spanned by $\boldsymbol{c}_{0}, \boldsymbol{c}_{1}$. The Plücker coordinate method is extended for multi-qubit states $[17,18]$.

In conclusion, we apply the measures (7.17) for four-qubit states. For the GHZ state $|\Psi\rangle=\frac{1}{\sqrt{2}}(|0000\rangle+|1111\rangle)$, we have

$$
\begin{equation*}
\operatorname{det}\left(F F^{*}\right)=\frac{1}{4}, \quad \operatorname{det}\left(I_{4}-G G^{*}\right)=\frac{1}{4} \tag{8.4}
\end{equation*}
$$

For the W state $|\Psi\rangle=\frac{1}{2}(|0001\rangle+|0010\rangle+|0100\rangle+|1000\rangle)$, we have

$$
\begin{equation*}
\operatorname{det}\left(F F^{*}\right)=\frac{1}{8}, \quad \operatorname{det}\left(I_{4}-G G^{*}\right)=\frac{1}{4} . \tag{8.5}
\end{equation*}
$$

For the sake of comparison, we touch on a separate state $|\Psi\rangle=\frac{1}{2}(|00\rangle+|11\rangle) \otimes(|00\rangle+|11\rangle)$. A calculation gives

$$
\begin{equation*}
\operatorname{det}\left(F F^{*}\right)=\frac{1}{4}, \quad \operatorname{det}\left(I_{4}-G G^{*}\right)=0 \tag{8.6}
\end{equation*}
$$

The second equation of the above is trivial by definition. As in the case of three-qubits, we may define the concurrence between qubit A and the triple $B C D$ to be $2 \sqrt{\operatorname{det} \rho_{A}}$, where $\rho_{A}=\operatorname{tr}_{B C D}|\Psi\rangle\langle\Psi|$. Since the reduced density matrix ρ_{A} corresponds to $\overline{F F^{*}}$, the first equation of (8.6) means that the concurrence between qubit A and the triple $B C D$ is equal to 1 , which coincides with the concurrence for the two-qubit state $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$.

Acknowledgments

The author would like to thank the referees for valuable comments, which have helped him to improve the description of the article.

References

[1] Bennet C H, DiVincenzo D P, Smolin J and Wootters W K 1996 Phys. Rev. A 543824
[2] Hill S and Wootters W K 1997 Phys. Rev. Lett. 785022
[3] Mosseri R and Dandoloff R 2001 J. Phys. A: Math. Gen. 3410243
[4] Bengtsson I and Brännlund J 2002 Int. J. Mod. Phys. 174675
[5] Lévay P 2004 J. Phys. A: Math. Gen. 371821
[6] Meyer D A and Wallach N R 2002 J. Math. Phys. 434273
[7] Carteret H A and Sudbery A 2000 J. Phys. A: Math. Gen. 334981
[8] Knapp A W 2002 Lie Groups Beyond an Introduction 2nd edn (Boston: Birkhäuser)
[9] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61052306
[10] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62062314
[11] Wong A and Christensen N 2001 Phys. Rev. A 63044301
[12] Bernevig B A and Chen H D 2003 J. Phys. A: Math. Gen. 368325
[13] Miyake A 2003 Phys. Rev. A 67012108
[14] Miyake A and Verstraete F 2004 Phys. Rev. A 69012101
[15] Emary C 2004 J. Phys. A: Math. Gen. 378293
[16] Lévay P 2005 Phys. Rev. A 71012334
[17] Lévay P 2005 J. Phys. A: Math. Gen. 389075
[18] Heydari H 2006 J. Math. Phys. 47012103

