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Abstract
It is widely recognized that concurrence can be regarded as a measure of two-
qubit entanglement. This paper studies the geometry of concurrence for a
two-qubit system to show that the concurrence serves as a coordinate of the
factor space G\M ∼= [0, 1], where M ∼= S7 is the space of normalized two-qubit
states, and where G = U(1)×SU(2)×SU(2). Any monotonically increasing
function of the concurrence can serve as a measure for entanglement. From the
viewpoint of Riemannian geometry, a state with concurrence r is shown to be
distant from the separable states by 1

2 sin−1 r , where r ranges over 0 � r � 1.
In addition, measures of entanglement for n-qubits are discussed on the basis
of a bipartite decomposition C2� ⊗ C2m

with � + m = n. They are invariant
under the local unitary transformation group U(2�) × U(2m).

PACS numbers: 02.40.Pc, 03.65.−w, 03.67.−a

1. Introduction

Since Bennet et al [1] and Hill–Wootter [2] it has been widely recognized that concurrence can
serve as a measure of two-qubit entanglement. Geometric study of entanglement has already
been made in [3–5], for example. However, the full geometric study of the concurrence for
two-qubit systems has not yet been made. It is the purpose of this paper to show that the two-
qubit concurrence is characterized completely in terms of transformation groups and geometry;
concurrence for a two-qubit system proves to be a coordinate of the factor space G\M ∼= [0, 1],
where G = U(1) × SU(2) × SU(2) and where M ∼= S7 is the space of normalized two-qubit
states. Further, a state with concurrence r is shown to be distant from the separable states
by 1

2 sin−1 r with 0 � r � 1, with respect to the metric naturally defined on G\M from that
on M. In addition, from the viewpoint of transformation groups, candidates for measures of
entanglement for n-qubits are put forward on the basis of a bipartite decomposition of the
n-qubit system.

The organization of this paper is as follows. Section 2 is a geometric setting for two-qubit
states. The state space M for a two-qubit system is identified with the unit sphere S7, which is
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realized in the space of 2 × 2 complex matrices with constraints. The concurrence of a state
C ∈ M is defined to be |2 det C|. The concurrence is clearly invariant under the transformation
C �→ eiθgCh with eiθ ∈ U(1) and g, h ∈ SU(2). This fact and the canonical Riemannian
structure defined on S7 will be used in the succeeding sections. Section 3 contains a review
of the Hopf bundle S7 → S4. The bundle is realized as M → M/SU(2). In section 4,
the factor space (SU(2) × SU(2))\M is studied and shown to be homeomorphic with D,
the closed unit disc. The projection S7 ∼= M → D is realized by the map C �→ 2 det C. A
Riemannian metric on the open subset D of D will be obtained by submersing that on M1,
where M1 is an open dense subset of M. In section 5, the Hopf map S7 → S4 is followed
by the map S4 → D to form the projection S7 → D. Section 6 deals with entanglement
measurement for two-qubits. It turns out that the factor space (U(1) × SU(2) × SU(2))\M ,
on which the concurrence should be defined, is homeomorphic with the closed interval [0, 1].
The open interval (0, 1) is endowed with a Riemannian metric, according to which the point
r ∈ (0, 1) is shown to be distant from 0 by 1

2 sin−1 r , where sin−1 denote the arcsine. Put
another way, a state C with concurrence r = |2 det C| is distant from the separable states by
1
2 sin−1 r . Section 7 deals with concurrence as measures of three- and more-qubit entanglement.
Section 8 contains concluding remarks and comments.

2. Geometric setting for two-qubit states

The Hilbert space for a two-qubit system is C2 ⊗ C2, of which the elements are expressed as
� = ∑

cjkej ⊗ek , where the ej are the basis vectors of the canonical basis of C2. The space
of the normalized states is characterized by

∑ |cjk|2 = 1. Since the matrices C = (cjk) with
tr(C∗C) = ∑ |cjk|2 = 1 and the normalized states � are in one-to-one correspondence, we
take the state space for the two-qubit system as

M :=
{
C =

(
c00 c01

c10 c11

) ∣∣∣∣ tr(C∗C) = 1

}
, (2.1)

which is diffeomorphic with the unit sphere S7. We note here that the Bell basis for the
two-qubit system corresponds to the set of matrices

E1 = 1√
2

(
1 0
0 1

)
, E2 = 1√

2

(
i 0
0 −i

)
,

(2.2)

E3 = 1√
2

(
0 i
i 0

)
, E4 = 1√

2

(
0 1

−1 0

)
.

It is well known that a normalized state � is maximally entangled if and only if√
2C ∈ U(2), and that � is separable if and only if det C = 0 [5]. In view of this, one

of measures for two-qubit entanglement is given by |det C|; � is maximally entangled or
separable, according to whether |det C| = 1/2 or |det C| = 0. In [1, 2], the concurrence is
defined to be the quantity |∑4

i=1 αi |, where αi are determined for C ∈ M by C = ∑4
i=1 αiEi

with Ei the matrices given in (2.2). A calculation with this expression of C shows that
2 det C = ∑4

i=1 α2
i , so that one takes |2 det C| as concurrence.

One of our purposes is to characterize the concurrence in terms of transformation
groups. Let U1 and U2 be unitary matrices in U(2). Then the local unitary transformation
� �→ (U1 ⊗ U2)� gives rise to the action of the group U(2) × U(2) on M in the manner

C �→ U1CUT
2 , C ∈ M, (U1, U2) ∈ U(2) × U(2). (2.3)

In what follows, we work with the action of G := U(1) × SU(2) × SU(2) on M, which is
described as

C �→ eiθU1CUT
2 , C ∈ M, eiθ ∈ U(1), (U1, U2) ∈ SU(2) × SU(2). (2.4)
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The concurrence |2 det C| is manifestly invariant under the action of G. It then turns out that
|2 det C| should be defined on the factor space G\M . One of our aims is to describe the space
G\M in an explicit manner. We have here to refer to [6], in which they state that a measure of
entanglement is a function on the space of states of a multiparticle system which is invariant
under local unitary operators, i.e., unitary transformations on individual particles. The above
group action is already pointed out in [7], but is not associated with the factor space G\M .

To measure the entanglement of states, we wish to use a naturally defined metric on G\M .
To this end, we start with the canonical metric on M ∼= S7, which is defined through

〈X1, X2〉 = 1
2 tr(X∗

1X2 + X∗
2X1), X1, X2 ∈ TCM, (2.5)

where TCM denotes the tangent space to M at C,

TCM = {X ∈ C2×2 | tr(C∗X + X∗C) = 0}, (2.6)

and where C2×2 denotes the linear space of 2 × 2 complex matrices. We will find out what
metric is defined on the factor space G\M in section 6, which will serve as a measure of
entanglement. To be precise, M should be restricted to an open subset of M in order to treat
the metric.

3. The Hopf bundle S7 → S4 revisited

Before dealing with the space G\M , we wish to study the space M/SU(2) or SU(2)\M ,
which will link our study with a preceding work [5] on entanglement measurement associated
with the Hopf bundle S7 → S4.

The group SU(2) acts on M to the both sides:

C �→ gC, C �→ Cg, g ∈ SU(2). (3.1)

Since these actions are both free, the respective factor spaces, SU(2)\M and M/SU(2), are
manifolds. The natural projections are realized as

πL : C �→ (C∗C, det C) ∈ H1 × C, πR : C �→ (CC∗, det C) ∈ H1 × C, (3.2)

respectively, where H1 denotes the space of 2 × 2 Hermitian matrices of trace 1. Note here
that C∗C and CC∗ are invariant under the left and the right SU(2) actions, respectively. We
now verify that each factor space is diffeomorphic with S4. First, we consider the map πR .
Since CC∗ is a Hermitian matrix of trace 1, we may put CC∗ in the form

CC∗ = 1

2

(
1 + t w

w 1 − t

)
, w ∈ C, t ∈ R. (3.3)

Further, we set 2 det C = z. Then, from det(CC∗) − |det C|2 = 0, we obtain the equation
1 = t2 + |w|2 + |z|2, which defines the unit sphere S4 ⊂ R5 ∼= C2 × R. Thus, πR proves to be
a map S7 → S4, which is surjective, as is verified by a straightforward calculation. We now
show that for a given point p ∈ S4 ⊂ H1 × C, the inverse image π−1

R (p) is diffeomorphic
with SU(2). Assume that there are matrices C1, C2 ∈ M such that C1C

∗
1 = C2C

∗
2 and

det C1 = det C2. Then, from C1C
∗
1 = C2C

∗
2 , there exists a unitary matrix g which brings a

positive semi-definite matrix C1C
∗
1 = C2C

∗
2 into a diagonal one, C1C

∗
1 = C2C

∗
2 = g�2g−1,

where �2 is a positive semi-definite diagonal matrix. Then, one has singular decompositions
of C1 and C2 in the form C1 = g�h1, C2 = g�h2, respectively, where � is a positive
semi-definite diagonal matrix, and h1, h2 ∈ U(2). Hence, we obtain

C2 = g�h2 = C1h, h := h−1
1 h2. (3.4)

Further, we obtain det h = 1 from det C2 = det C1. This implies that π−1
R (p) ∼= SU(2). Thus

πR realizes the Hopf bundle S7 → S4 with fibre SU(2). In the same manner, we can verify
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that πL also provides the Hopf bundle S7 → S4. In [3, 5], the Hopf bundle S7 → S4 is treated
in terms of quaternion. They claim that the Hopf map is entanglement sensitive. However, we
would like to say that the map M → G\M is of more help than the Hopf map M → SU(2)\M
(section 5).

We proceed to the canonical connection on the bundles πL : S7 → S4 and πR : S7 → S4,
respectively. The vertical subspaces of TCM with respect to the left and right actions are given
by

V L
C = {ξC|ξ ∈ su(2)}, V R

C = {Cξ |ξ ∈ su(2)}, (3.5)

respectively. We define the horizontal subspaces HL
C and HR

C to be the orthogonal

complements, HL
C = (

V L
C

)⊥
and HR

C = (
V R

C

)⊥
, of V L

C and V R
C , respectively, with respect to

the Riemannian metric given in (2.5). Then, a straightforward calculation shows that HL
C and

HR
C are given by

HL
C = {X ∈ TCM|CX∗ − XC∗ ∈ spanR{iI2}}, (3.6)

HR
C = {X ∈ TCM|C∗X − X∗C ∈ spanR{iI2}}, (3.7)

respectively, where I2 denotes the 2 × 2 unit matrix.
To get the horizontal subspace in an explicit manner, we consider the SU(4) action on

M ∼= S7. Since SU(4) acts transitively on M ⊂ C2 ⊗ C2 ∼= C4, tangent vectors to M will be
obtained by the su(4) action on M. It is well known [8] that su(4) has the Cartan decomposition

su(4) = k ⊕ p, (3.8)

where

k = span{iI ⊗ σj/2, iσk ⊗ I/2}, j, k = 1, 2, 3, (3.9)

p = span{iσj ⊗ σk/2}, j, k = 1, 2, 3, (3.10)

and where σj are the Pauli matrices,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.11)

We note here that ξ ⊗ η acts on M in the manner that C �→ ξCηT , and that k and p satisfy

[k,k] ⊂ k, [p,k] ⊂ p, [p,p] ⊂ k. (3.12)

We can verify that the subalgebra k generates the vertical subspace V L
C + V R

C . In fact, we
observe that iI ⊗ σj/2 and iσk ⊗ I yield vertical tangent vectors

i

2
CσT

j ∈ V R
C ,

i

2
σkC ∈ V L

C ,

respectively. In what follows, the singular decomposition C = g�h is of great help, where
� = diag(µ1, µ2) with µk singular values of C and where g, h ∈ U(2). We observe from the
singular decomposition of C that the vertical vectors ξ� and �ηT at � = diag(µ1, µ2), with
ξ, η ∈ su(2), are carried to vertical vectors at C = g�h by Lg ◦ Rh. In fact, one has

g(ξ�)h = Adg(ξ)C, g(�ηT )h = CAdhT (η)T ,

where it is to be noted that Adg : su(2) → su(2) if g ∈ U(2).
We turn to the horizontal subspace at � = diag(µ1, µ2), and then proceed to the horizontal

subspace at C = g�h. While k is associated with vertical vectors, horizontal vectors will
be obtained by the action of p. We have candidates, iσj�σT

k , j, k = 1, 2, 3, for horizontal
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vectors at �. Our task is now to ask if these vectors are horizontal or not. A straightforward
calculation results in

HR
� = spanR{X1, X2, X3, X4}, (3.13)

HL
� = spanR{X1, X2, X5, X6}, (3.14)

where

X1 = iσ1�σT
1 , X2 = iσ1�σT

2 , X3 = iσ1�σT
3 ,

(3.15)
X4 = iσ2�σT

3 , X5 = iσ3�σT
1 , X6 = iσ3�σT

2 .

The horizontal subspace at � is carried to that at C = g�h by Lg ◦ Rh, which can be shown
in a straightforward manner:

HL
C = gHL

�h, HR
C = gHR

� h. (3.16)

We are now interested in the orthogonality of these horizontal vectors. A straightforward
calculation shows that

〈Xk,X�〉 = δk�, k, � ∈ {1, 2, 3, 4}, or k, � ∈ {1, 2, 5, 6}, (3.17)

where Xk denote the basis vectors in HR
� or in HL

� , according to whether k ∈ {1, 2, 3, 4} or
k ∈ {1, 2, 5, 6}. Equation (3.17) is true for HR

C and for HL
C . In fact, as easily seen, for tangent

vectors X and Y at �, one has

〈gXh, gYh〉C = 〈X, Y 〉�. (3.18)

4. SU (2) × SU (2) action

We now consider the left and the right SU(2) actions simultaneously,

C �→ gChT (g, h) ∈ SU(2) × SU(2), (4.1)

which is a restriction of the map (2.4). Since the group U(1) is easy to treat, we study the
above map in this section, and proceed to the full map (2.4) in section 6.

We start by obtaining the isotropy subgroup of SU(2)×SU(2) at � = diag(µ1, µ2) with
µ1 �= µ2, µj � 0. Let (g, h) ∈ SU(2) × SU(2) and � = diag(µ1, µ2) with µ1 > µ2 � 0.
Then, the equation g0�hT

0 = � is shown to be solved by

g0 =
(

eiχ 0
0 e−iχ

)
, h0 =

(
e−iχ 0

0 eiχ

)
= g−1

0 . (4.2)

Hence the isotropy subgroup at � = diag(µ1, µ2) with µ1 > µ2 � 0 proves to be

G� = {(
g0, g

−1
0

)∣∣g0 = diag(eiχ , e−iχ )} ∼= U(1). (4.3)

If µ := µ1 = µ2 > 0, the isotropy subgroup at � = µI is given by

G� = {(g, g)|g ∈ SU(2)} ∼= SU(2). (4.4)

For a generic C ∈ M , we put C in the form C = g�h,� = diag(µ1, µ2) with g, h ∈ U(2),
where µk � 0 are the singular values of C. Then, for (g0, h0) ∈ G� with µ1 �= µ2, one obtains
Ag(g0)C(AhT (h0))

T = C, where Ag denotes the inner automorphism, Ag(k) = gkg−1. This
implies that

GC = {(Ag(g0), AhT (h0))|(g0, h0) ∈ G�} ∼= U(1). (4.5)
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The same reasoning is true if µ1 = µ2, and thereby resulting in GC
∼= SU(2). It turns out

that the isotropy subgroup of SU(2) × SU(2) at C is U(1) or SU(2) according to whether
µ1 �= µ2 or µ1 = µ2:

GC
∼=

{
U(1) if µ1(C) �= µ2(C),

SU(2) if µ1(C) = µ2(C),
(4.6)

where µk(C), k = 1, 2, denote the singular values of C ∈ M .
According to whether the singular values are different or not, the state space M ∼= S7 is

broken up into two subsets,

M = M1 ∪ M2, (4.7)

where

M1 = {C ∈ M|µ1(C) �= µ2(C)}, M2 = {C ∈ M|µ1(C) = µ2(C)}. (4.8)

These subsets are invariant under the SU(2) × SU(2) action, since the singular values are
invariant under the transformation C �→ gChT with (g, h) ∈ SU(2) × SU(2).

We are to look into the invariant subsets, M1 and M2. First we take up M2. Then,
C ∈ M2 is expressed as C = g�h with � = diag(µ1, µ2), µ1 = µ2, and g, h ∈ U(2).
Since tr(C∗C) = µ2

1 + µ2
2 = 1, one has µ2

1 = µ2
2 = 1/2, so that

√
2C = gh ∈ U(2).

This implies that M2 ∼= U(2). The isotropy subgroup at C ∈ M2 is already known to be a
subgroup isomorphic with SU(2). Hence, the orbit through C ∈ M2 is diffeomorphic with
(SU(2) × SU(2))/SU(2) ∼= SU(2), so that the orbit space proves to be

SU(2)\M2 ∼= SU(2)\U(2) ∼= U(1). (4.9)

We turn to M1. Since the isotropy subgroup at C ∈ M1 is isomorphic with U(1), the
orbit through C is diffeomorphic with (SU(2) × SU(2))/U(1). We wish to know of the orbit
space (SU(2) × SU(2))\M1. To this end, we take up det(C), which is invariant under the
SU(2) × SU(2) action. On account of the constraint that tr(C∗C) = 1, one has

det(C∗C) = µ2
1µ

2
2 �

(
µ2

1 + µ2
2

2

)2

=
(

1

2
tr(C∗C)

)2

= 1

4
, (4.10)

so that

|det(C)| � 1
2 . (4.11)

The equality occurs if and only if µ1 = µ2. Put another way, |det(C)| = 1/2 if and only if
C ∈ M2. Hence, for C ∈ M1, we have |det(C)| < 1/2.

We are allowed to regard 2det(C) = z as the map

2 det : M1 −→ D := {z ∈ C||z| < 1}. (4.12)

We show that this map is surjective. For a given z = reiθ ∈ D with 0 � r < 1, we
have to solve the equation 2 det(C) = z. To this end, we choose to look for C in the
form of singular decomposition, C = g�h, where g, h ∈ U(2) and � = diag(µ1, µ2).
Let g0, h0, and �0 be unitary matrices and a diagonal matrix, respectively, such that
det(g0) = ei(θ−α)/2, det(h0) = ei(θ+α)/2, and det(�0) = r/2, where α is an undetermined
real number. Then, the matrix C0 = g0�0h0 gives a solution to 2 det(C) = z. This means
that the map 2 det : M1 → D is surjective. We note here that �0 is unique for a given z,
if we choose µ1 to be greater than µ2 (µ1 > µ2 � 0). This is because the singular values
µ1, µ2, which are subject to µ2

1 + µ2
2 = 1, µ2

1µ
2
2 = r2/4, are distinct on account of r < 1. In

particular, if r = 0 then �0 = diag(1, 0). We proceed to explore the inverse image det−1(z)

of z ∈ D. Suppose that for a given z = reiθ ∈ D, there are two solutions C1 = g1�h1 and
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C2 = g2�h2 such that det(C1) = det(C2) = z/2. Then, one has det(g1h1) = det(g2h2) = eiθ ,
if det � �= 0. From this, it follows that det

(
g−1

2 g1
) = det

(
h2h

−1
1

) = eiα , where α is a real
number, and where we have used the fact that gk, hk ∈ U(2), k = 1, 2. Hence, we obtain
det

(
e−iα/2g−1

2 g1
) = det

(
e−iα/2h2h

−1
1

) = 1. This implies that there are g, h ∈ SU(2) such
that e−iα/2g−1

2 g1 = g−1 and e−iα/2h2h
−1
1 = h. Thus, one has

g2 = e−iα/2g1g, h2 = eiα/2hh1, g, h ∈ SU(2). (4.13)

Hence, two solutions C1 and C2 are related by

C2 = g2�h2 = g1gg−1
1 C1h

−1
1 hh1, (4.14)

where g1gg−1
1 , h−1

1 hh1 ∈ SU(2), though gk, hk ∈ U(2). This equation implies that two
solutions, C1 and C2, are related by the SU(2) × SU(2) action. We need to look into
this action in detail. As was already proved in (4.5), the SU(2) × SU(2) action has the
isotropy subgroup isomorphic with U(1). This implies that two solutions, C1 and C2, are
related by the SU(2) × SU(2) action up to the U(1) action. Put another way, the set of
solutions to 2 det(C) = z with z �= 0 is diffeomorphic to (SU(2) × SU(2))/U(1), the orbit
of SU(2) × SU(2) through a solution C. We now turn to the case of det(�) = 0. Clearly, for
�0 = diag(1, 0) ∈ M1, one has det(�0) = 0. Suppose that there is another solution C ∈ M1

such that det(C) = 0. Then, C is decomposed into C = g�0h with g, h ∈ U(2), which means
that two solutions, �0 and C, are related by the U(2) × U(2) action. For g, h ∈ U(2), we
may take g′ = geiθ and h′ = heiφ as matrices in SU(2). Then, we obtain

C = g′ e−iθ�0 e−iφh′ = g′
(

e−iθ 0
0 eiθ

) (
1 0
0 0

) (
e−iφ 0

0 eiφ

)
h′. (4.15)

Since g′diag(e−iθ , eiθ ) and diag(e−iφ, eiφ)h′ are both in SU(2), the above equation shows that
C and �0 are related by the SU(2) × SU(2) action. This action is not free. In fact, we can
prove that g3�0h3 = �0 with g3, h3 ∈ SU(2) if and only if g3 = h−1

3 = diag(eiχ , e−iχ ).
This implies that det−1(0) ∼= (SU(2) × SU(2))/U(1). It then turns out that, for any z with
|z| < 1, det−1(z/2) is diffeomorphic with the orbit of C ∈ M1 along with 2det(C) = z. Thus
we have shown that the orbit space for M1 is diffeomorphic with D,

(SU(2) × SU(2))\M1 ∼= D. (4.16)

We have already known that the orbit space for M2 is diffeomorphic with U(1) and that
det(C) = 1 if and only if C ∈ M2. This means that the orbit space U(1) ∼= S1 is realized as
the boundary of D. Thus, we have proved the following:

Theorem 1. The orbit space for the whole state space M ∼= S7 is homeomorphic with the
closed disc:

(SU(2) × SU(2))\M ∼= D. (4.17)

For the purpose of entanglement measurement, we study the metric on D ∼= (SU(2) ×
SU(2))\M1 which comes from that on M1 ⊂ M ∼= S7. The tangent space to the orbit of
SU(2) × SU(2) at C ∈ M is spanned by

ξC + CηT , (ξ, η) ∈ su(2) × su(2), (4.18)

and described as V L
C + V R

C (see (3.5) for the definition of V L
C and V R

C ). For C ∈ M1, one
verifies that

V L
C ∩ V R

C = {ξC = CηT | (ξ, η) ∈ su(2) × su(2)}
∼= {(ξ0,−ξ0) | ξ0 = diag(χ,−χ), χ ∈ R}
∼= GC

∼= u(1), (4.19)
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where GC denotes the Lie algebra of the isotropy subgroup GC given in (4.6) with
µ1(C) �= µ2(C). Hence, one has dim

(
V L

C + V R
C

) = 6 − 1 = 5, the dimension of the
orbit (SU(2) × SU(2))/U(1) through C ∈ M1. The horizontal subspace at C ∈ M1 is given
by

(
V L

C + V R
C

)⊥ = HL
C ∩ HR

C , of which the dimension is dim
(
V L

C + V R
C

)⊥ = 7 − 5 = 2 =
dim

(
HL

C ∩ HR
C

)
. From (3.13) and (3.14), it follows that

HL
C ∩ HR

C = g
(
HL

� ∩ HR
�

)
h = {gX1h, gX2h}, (4.20)

where X1 and X2 are given by (3.15). As was shown in (3.17) and (3.18), the horizontal
vectors gX1h, gX2h form an orthonormal system.

The factor space D ∼= (SU(2)×SU(2))\M1 is endowed with a Riemannian metric through
the map 2 det : M1 → (SU(2)×SU(2))\M1 so that it may be a Riemannian submersion. Put
another way, the Riemannian metric dσ 2 on D is defined through

〈(2det∗)CX, (2det∗)CY 〉2 det(C) = 〈X, Y 〉C, (4.21)

where X, Y ∈ HL
C ∩ HR

C . To find the explicit expression of dσ 2, we have to know the
expression of the tangent map det∗. However, it is easy to find that

(det∗)CX = det(C)tr(C−1X), X ∈ TCM. (4.22)

We now verify that the horizontal subspace HL
C ∩ HR

C at C ∈ M1 maps isomorphically to the
tangent space to D at z = 2 det(C), if 0 < |z| < 1. A straightforward calculation along with
(4.20) provides

U1 := (2det∗)C(gX1h) = 2iz

|z| , (4.23)

U2 := (2det∗)C(gX2h) = −2z
√

1 − |z|2
|z| , (4.24)

which shows that (2det∗)C is a vector space isomorphism of the horizontal subspace at C with
the tangent space to D at z = 2 det C with 0 < |z| < 1. Further, from definition (4.21),
these vector fields should be orthonormal to each other with respect to the metric dσ 2 on
D, dσ 2(Uj , Uk) = δjk, j, k = 1, 2. From (4.23) and (4.24), the vectors Uk, k = 1, 2, which
are a moving frame on D, proves to be expressed, in terms of the polar coordinates, z = r eiθ ,
on D, as

U1 = 2

r

∂

∂θ
, U2 = −2

√
1 − r2

∂

∂r
. (4.25)

The metric dσ 2 satisfying dσ 2(Uj , Uk) = δjk are then given by

dσ 2 = 1

4

(
dr2

1 − r2
+ r2dθ2

)
. (4.26)

Theorem 2. The open disc D, which is realized as the orbit space (SU(2) × SU(2))\M1, is
endowed with the Riemannian metric given in (4.26).

5. The map S4 → D

So far we have studied the maps S7 → S4 and S7 → D. We are now interested in the map
S4 → D. Recall that S4 is realized by (CC∗, det C) as in (3.2) and that the variables w

and t are defined through (3.3) and the variable z by z = 2 det C. Since CC∗ and det C are
invariant under the right SU(2) action, the variables w, z ∈ C and t ∈ R are also invariant
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under the right SU(2) action, and therefore the quotient space S4 is described in terms of these
invariants.

Though z = 2 det C is invariant under the left SU(2) action as well, w and t are not. We
now wish to study the left SU(2) action on the variables w and t. The left SU(2) action on
M induces the adjoint action on CC∗; CC∗ �−→ gCC∗g−1, which gives rise to an action on

(w, t) ∈ C × R ∼= R3. First we take g = (eiθ 0

0 e−iθ

)
, a one-parameter subgroup of SU(2). A

straightforward calculation provides(
eiθ 0
0 e−iθ

)(
1 + t w

w 1 − t

)(
e−iθ 0

0 eiθ

)
=

(
1 + t e2iθw

e−2iθw 1 − t

)
, (5.1)

which defines the map

w �→ e2iθw, t �→ t. (5.2)

On setting w = u + iv, this transformation is expressed as a rotation about the t-axis,
u

v

t


 �−→


cos 2θ − sin 2θ 0

sin 2θ cos 2θ 0
0 0 1





u

v

t


 . (5.3)

In a similar manner, with g = ( cos θ i sin θ

i sin θ cos θ

)
and g = ( cos θ sin θ

−sin θ cos θ

)
, we can associate a rotation

about the u-axis,
u

v

t


 �−→


1 0 0

0 cos 2θ −sin 2θ

0 sin 2θ cos 2θ





u

v

t


 , (5.4)

and a rotation about the v-axis,
u

v

t


 �−→


cos 2θ 0 −sin 2θ

0 1 0
sin 2θ 0 cos 2θ





u

v

t


 , (5.5)

respectively.
Put together, the rotations (5.3), (5.4), and (5.5) generate any rotation in the space

C × R ∼= R3, the (u, v, t)-space. Thus, we have shown that the left SU(2) action on M gives
rise to the rotation group SO(3) acting on the (u, v, t)-space.

Since S4 is given by |z|2 + |w|2 + t2 = 1 in C2 × R, and since the induced SO(3) action
leaves both z and |w|2 + t2 = u2 + v2 + t2 invariant, the SO(3) acts indeed on S4. We now
look into the SO(3) action on S4. If |z| �= 1, then one has a two-sphere S2(

√
1 − |z|2) of

radius
√

1 − |z|2 in S4 for each fixed z ∈ D. Hence, the punctured sphere S4 − {|z| = 1} is
decomposed into

S4 − {|z| = 1} =
⊔
z∈D

{z} × S2(
√

1 − |z|2) ∼= D × S2. (5.6)

Since the SO(3) acts transitively on each factor space S2(
√

1 − |z|2) and leaves D invariant,
we obtain the quotient space

SO(3)\(S4 − {|z| = 1}) ∼= D. (5.7)

If we set |z| = 1 in S4, we have a circle |z| = 1 with (w, t) = 0. The SO(3) leaves invariant z

and (w, t) = 0, so that one has

SO(3)\(S4 ∩ {|z| = 1}) ∼= {z ∈ C||z| = 1} ∼= S1. (5.8)
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Equations (5.7) and (5.8) are put together to show that the total quotient space is homeomorphic
to D,

SO(3)\S4 ∼= D = {z ∈ C||z| � 1}. (5.9)

Thus, we have the following:

Theorem 3. The Hopf bundle S7 → S4 is followed by the map S4 → D to accomplish the
following diagram,

S7 → S4

↓ ↙

D

, (5.10)

where the maps indicated by the down-arrow and by the right-arrow have been studied in
sections 4 and 3 (in the name of πR), respectively, and where the map assigned by the SW-arrow
denotes the projection, S4 → SO(3)\S4 ∼= D, given in (5.9).

In conclusion of this section, we study the metric on S4 which is defined from that on M,
and further investigate how the metrics on S4 and on D are related to each other. We start with
the eigenvalues of the matrix CC∗. From |CC∗ − λI2| = 0, we find that they are given by

λ1 = 1
2

(
1 +

√
t2 + |w|2), λ2 = 1

2

(
1 −

√
t2 + |w|2). (5.11)

Hence, CC∗ is put in the form

CC∗ = 1

2

(
1 + t w

w 1 − t

)
= g

(
λ1 0
0 λ2

)
g∗, (5.12)

where g ∈ U(2). From this, it follows that g = I2 if and only if w = 0 and t > 0. We take
S4 as realized by |z|2 + |w|2 + t2 = 1 in C2 × R or by x2 + y2 + u2 + v2 + t2 = 1 in R5 with
z = x + iy.

Let ρ denote the map C �→ CC∗. Then, the differential of ρ is given by

ρ∗(X) = XC∗ + CX∗, X ∈ TCM. (5.13)

The differential of the map πR : M → S4 is then given by πR∗ = (ρ∗, det∗), where det∗ is
already given in (4.22). Like (4.21), a metric on S4 is defined through

〈(πR∗)CX, (πR∗)CY 〉πR(C) = 〈X, Y 〉C, X, Y ∈ HR
C . (5.14)

We are to carry horizontal vectors in HR
C to tangent vectors to S4 by πR∗. Recall that the

horizontal subspace HR
� at � = diag(µ1, µ2) is given by (3.13) and HR

C at C = g�h by (3.16).
There are four linearly independent vectors gXkh in HR

C , for which we are going to calculate
πR∗(gXkh), k = 1, . . . , 4. We have already found out (det∗)C(gX1h) and (det∗)C(gX2h) in
(4.23) and (4.24), respectively. Further, it is easy to verify that

(det∗)C(gX3h) = (det∗)C(gX4h) = 0. (5.15)

The remaining task to do is to calculate (ρ∗)C(gXkh), k = 1, . . . , 4. It is a matter of
straightforward calculation to obtain

(ρ∗)C(gX1h) = 0, (5.16a)

(ρ∗)C(gX2h) = |z|g
(

1 0
0 −1

)
g∗, (5.16b)
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(ρ∗)C(gX3h) = g

(
0 −i

i 0

)
g∗, (5.16c)

(ρ∗)C(gX4h) = −g

(
0 1
1 0

)
g∗. (5.16d)

In view of (5.12), the right-hand sides of (5.16b), (5.16c), and (5.16d) are regarded as

tangent vectors to H1 at 1
2 Adg

(1+|t | 0
0 1−|t |

)
in the directions of (Adg)∗

(1 0
0 −1

)
, (Adg)∗

(0 −i
i 0

)
,

and(Adg)∗
(0 1

1 0

)
, respectively, where(Adg)∗ denotes the differential of Adg . In terms of the

local coordinates (u, v, t) of H1 ∼= R3, these tangent vectors are then expressed as

(ρ∗)C(gX2h) = 2|z|(Adg)∗
( ∂

∂t

)
q
, (5.17a)

(ρ∗)C(gX3h) = −2(Adg)∗
( ∂

∂v

)
q
, (5.17b)

(ρ∗)C(gX4h) = −2(Adg)∗
( ∂

∂u

)
q
, (5.17c)

respectively, where q = (0, 0, t) with t > 0. It should be noted that Adg defines the SO(3)

action on H1 ∼= R3.
We here recall that if |z| �= 1, then S4 − {|z| = 1} is decomposed as in (5.6). In view

of this decomposition, we are to treat the metric induced on the sphere S2(
√

1 − |z|2). When
restricted to S2(

√
1 − |z|2), definition (5.14) provides

〈(ρ∗)C(gXkh), (ρ∗)C(gX�h)〉 = 〈gXkh, gX�h〉C, k, � = 3, 4, (5.18)

where the brackets in the left-hand side denote the metric on S2(
√

1 − |z|2). We have here to
note that (ρ∗)C(gX2h) is normal to the sphere S2(

√
1 − |z|2), so that it makes no contribution

to determining the metric on S2(
√

1 − |z|2). Since 〈gXkh, gX�h〉 = 〈Xk,X�〉, as is easily
seen, equations (5.17b), (5.17c) and (5.18) are put together to provide〈
−2(Adg)∗

(
∂

∂v

)
q

,−2(Adg)∗

(
∂

∂u

)
q

〉
=

〈
− 2

(
∂

∂v

)
q

,−2

(
∂

∂u

)
q

〉
, etc, (5.19)

where q = (0, 0, t) with t =
√

1 − |z|2. This implies that the metric on S2(
√

1 − |z|2) should
be SO(3) invariant and determined by the inner product on the tangent space at q. Since
〈gXkh, gX�h〉 = δk�, we obtain〈(

∂

∂v

)
q

,

(
∂

∂u

)
q

〉
= 0,

〈(
∂

∂u

)
q

,

(
∂

∂u

)
q

〉
=

〈(
∂

∂v

)
q

,

(
∂

∂v

)
q

〉
= 1

4
. (5.20)

Since the metric defined on the sphere S2(
√

1 − |z|2) is SO(3) invariant, it turns out to be
given by

1
4 (1 − |z|2) d�2, d�2 := dφ2 + sin2 φ dψ2, (5.21)

where d�2 denotes the canonical metric on the unit sphere S2. The above metric is also induced
on S2(

√
1 − |z|2) from the metric 1

4 (du2+dv2+dt2) by setting u+iv = R eiψ sin φ, t = R cos φ

with R =
√

1 − |z|2.
So far we have obtained the metric on the factor space S2 of S4 −{|z| = 1} ∼= D×S2. The

metric defined on the factor space D has been already obtained in (4.26). Since the systems
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{gX1h, gX2h} and {gX3, h, gX4h} are orthogonal to each other and since {gX1h, gX2h} and
{gX3h, gX4h} determine the metrics on D and on S2, respectively, these metrics are put
together to provide the metric on S4 − {|z| = 1},

ds2 = 1

4

(
dr2

1 − r2
+ r2dθ2

)
+

1

4
(1 − r2) d�2. (5.22)

We note here that this metric is induced on S4 from the flat metric 1
4 (dx2 +dy2 +du2 +dv2 +dt2)

on R5 through

x + iy = r eiθ , u + iv = R eiψ sin φ, t = R cos φ, r2 + R2 = 1. (5.23)

Thus, the metric given in (5.22) extends to the whole sphere S4, as is well known.
It was pointed out in [5] that part of (5.22),

1

4

(
dr2

1 − r2
+ (1 − r2) d�2

)
, (5.24)

defines the Bures metric on the space of density matrices, i.e., the space of CC∗ with C ∈ M .

6. Entanglement measurement for two-qubit

We are now in a position to describe the factor space G\M with G = U(1)×SU(2)×SU(2).
Since U(1) acts on D in the manner, z �→ eiθ z, we obtain

G\M ∼= U(1)\D ∼= [0, 1], (6.1)

where the right-hand side denotes the closed interval. As we anticipated in section 2, the
concurrence is defined on G\M and serves also as a coordinate of the closed interval,
r = |z| = |2 det C|. Since the end points r = 0 and r = 1 are associated with the
separable states and the maximally entangled states, respectively, we are allowed to take
any monotonically increasing function of r as a measure of entanglement. A natural measure
is defined through a natural metric on G\M . The open interval (0, 1) is endowed with
the metric determined by that on D. In fact, from (4.26), one obtains

dτ 2 = 1

4

dr2

1 − r2
. (6.2)

The length of the interval r1 � r � r2 with respect to dτ 2 is then given by∫ r2

r1

dτ = 1

2

∫ r2

r1

dr√
1 − r2

= 1

2
(sin−1 r2 − sin−1 r1), (6.3)

where sin−1 denotes the arcsine with the range [−π/2, π/2]. Letting r1 → 0, we observe that
r = |2 det C| is distant from 0 by 1

2 sin−1 r . Summing up the above, we obtain the following:

Theorem 4. The orbit space G\M with G = U(1) × SU(2) × SU(2) is homeomorphic with
the closed interval [0, 1]. The open subset (0, 1) is endowed with the Riemannian metric given
by (6.2), with respect to which r is distant from 0 by 1

2 sin−1 r , which means that a two-qubit
system C with concurrence r = |2 det C| is distant from the separable states by 1

2 sin−1 r .

One of well-known measures of entanglement is the von Neumann entropy, which is
defined to be

S(C) = −tr(CC∗ log(CC∗)), (6.4)

and written also as

S(C) = −
∑

k

λk log λk, (6.5)
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where λk are the eigenvalues of CC∗. Since the S(C) is invariant under the U(1) × SU(2) ×
SU(2) action, it projects to a function on the closed interval [0, 1] (see (6.1)). In fact, from
(6.5) together with λ1 + λ2 = 1 and λ1λ2 = r2/4, one obtains a monotonically increasing
function on [0, 1],

S̃(r) = − 1
2 (1 +

√
1 − r2) log 1

2 (1 +
√

1 − r2) − 1
2 (1 −

√
1 − r2) log 1

2 (1 −
√

1 − r2). (6.6)

7. Three- and more-qubit concurrence

In this section, we make some comments on further study of entanglement measurement. The
entanglement for three- and more-qubit systems has been studied in many ways [7, 9–17]. Let

� =
∑

j,k,�∈{0,1}
cjk�ej ⊗ ek ⊗ e� (7.1)

be a three-qubit state, where
∑

j,k,� |cjk�|2 = 1. Let A be a binary integer variable ranging
over {00, 01, 10, 11}. Then the above state is rewritten as

� =
∑
j,A

cjAej ⊗ eA, (7.2)

where eA denotes ek ⊗ e�. Put another way, the three-qubit Hibert space C2 ⊗ C2 ⊗ C2 is
identified with C2 ⊗ C4. We denote the coefficient matrix of (7.2) by

C = (cjA) =
(

c000 c001 c010 c011

c100 c101 c110 c111

)
∈ C2×4, (7.3)

where C2×4 is the linear space of 2 × 4 complex matrices. Since the state � is normalized,
the C is subject to the constraint tr(CC∗) = 1. Now, the state � is separable in the sense that
� is a tensor product of the first one-qubit state and the last two-qubit state, if and only if C is
of rank 1. On account of the constraint tr(CC∗) = 1, the rank of CC∗ is 1 or 2, so that CC∗

is of rank 1 if and only if det(CC∗) = 0. Since C and CC∗ has the same rank, we may take
det(CC∗) as a measure of entanglement. We note here that if C ∈ C2×2 this quantity reduces
to |det C|2, the square of the two-qubit concurrence up to a constant factor.

We now show that the det(CC∗) is invariant under the U(2) × U(4) action, where
U(2) × U(4) acts on the state space by

(U ⊗ V )� =
∑

i,j,A,B

ujiciAvBAej ⊗ eB, (7.4)

and where U = (uij ) ∈ U(2), V = (vAB) ∈ U(4). Hence, the matrix C defined in (7.3)
transforms according to

C �→ UCV T . (7.5)

It is now easy to see that det(CC∗) is invariant under the U(2)×U(4) action. Hence, det(CC∗)
may serve as (squared) concurrence (up to a constant factor) between one-qubit and the other
two-qubit.

If � is separable in the sense discussed above, there exist non-vanishing vectors (cj ) ∈ C2

and (dA) ∈ C4 such that cjA = cjdA. Then, we may further treat the quantity
∣∣det

(
d00 d01

d10 d11

)∣∣ as

a concurrence. If this quantity vanishes further, the state � is fully separable in the sense that
� is a tensor product of three one-qubit states.

We now put det(CC∗) in another form. Let ci = ∑
A ciAeA ∈ C4. Then, the state � is

separable in the sense that � is a tensor product of a one-qubit state and a two-qubit state, if
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and only if ci , i = 0, 1, are linearly dependent. It is well known that the vectors ci , i = 0, 1,
are linearly dependent, if and only if

‖c0 ∧ c1‖2 = det

(〈c0, c0〉 〈c0, c1〉
〈c1, c0〉 〈c1, c1〉

)
= 0, (7.6)

where the first equality of the above equation gives the definition of the squared norm of the
two-vector c0 ∧ c1 ∈ ∧2 C4. Thus, ‖c0 ∧ c1‖ can serve as a concurrence between one-qubit
and the other two-qubit [9, 16]. (Comments on this will be given in the next section.) This
quantity is expressed in terms of ciA as

‖c0 ∧ c1‖2 =
∑
A<B

∣∣∣∣det

(
c0A c1A

c0B c1B

)∣∣∣∣
2

, (7.7)

and further proves to be equal to det(CC∗),

det(CC∗) = det

(〈c0, c0〉 〈c1, c0〉
〈c0, c1〉 〈c1, c1〉

)
= ‖c0 ∧ c1‖2. (7.8)

If a three-qubit state � is put in the form

� =
∑
A,�

cA�eA ⊗ e�, (7.9)

in place of (7.2), the same argument applies to the coefficient matrix (cAj ) ∈ C4×2. One
can group the first and the third factors to form another coefficient matrix, to which a similar
argument applies.

For four-qubit systems, we can put a state

� =
∑

j,k,�,m

cjk�mej ⊗ ek ⊗ e� ⊗ em (7.10)

in different forms,

� =
∑
j,K

cjKej ⊗ eK, (7.11)

� =
∑
A,B

cABeA ⊗ eB, (7.12)

where

eK = ek ⊗ e� ⊗ em, K ∈ {000, 001, . . . , 111}, (7.13)

eA = ej ⊗ ek, eB = e� ⊗ em, A,B ∈ {00, . . . , 11}. (7.14)

We associate (7.11) and (7.12) with the coefficient matrices

F = (cjK) ∈ C2×8, G = (cAB) ∈ C4×4, (7.15)

respectively. Since � is normalized, the matrices F and G are subject to the constraints

tr(FF ∗) = 1, tr(GG∗) = 1, (7.16)

respectively.
In the case of (7.11), the state is separable in the sense that � is a tensor product of a

one-qubit state and the other three-qubit state if and only if F is of rank 1. Since FF ∗ is of
rank 1 or 2, FF ∗ is of rank 1 if and only if det(FF ∗) = 0. As F and FF ∗ has the same
rank, the quantity det(FF ∗) serves as a measure of entanglement, which is invariant under
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the U(2) × U(8) action on the state space, as is verified in the same manner as that for the
three-qubit case (7.5).

In the case of (7.12), the state is separable in the sense that � is a tensor product of a
two-qubit state and another two-qubit state, if and only if the coefficient matrix G = (cAB)

is of rank 1. Since G is subject to the constraint tr(GG∗) = 1, the sum of eigenvalues of
GG∗ is equal to 1. Hence, GG∗ is of rank 1, if and only if one of the eigenvalues of the
positive semi-definite matrix GG∗ is 1, for which a necessary and sufficient condition is that
det(I4 −GG∗) = 0, where I4 denotes the 4×4 unit matrix. Thus, we may take det(I4 −GG∗)
as a measure of entanglement, which are invariant under the U(4) × U(4) action on the state
space. In summary, we may take

det(FF ∗) and det(I4 − GG∗) (7.17)

as measures of entanglement between one-qubit and the other three-qubit, and between two-
qubit and another two-qubit, respectively.

Measures of entanglement for five- and more-qubit systems will be able to be defined in
the same manner. First, we form a coefficient matrix H ∈ C2�×2m

, where �+m = n for n-qubit
systems. Then, we describe the condition for H to be of rank 1. If 2 < � � m, the condition
takes the form det(I − HH ∗) = 0, where I denotes the 2� × 2� unit matrix. If 2 = � � m,
the condition is written as det(HH ∗) = 0. Thus, det(I − HH ∗) or det(HH ∗) = 0 serve
as measures of entanglement between �-qubit and the other m-qubit, according to whether
2 < � � m or 2 = � � m.

Measures of entanglement are studied in [15, 17] on the basis of bipartite partition
C2� ⊗ C2m

. However, the measure of the form det(I − HH ∗), which is easy to use, does not
seem to have been mentioned.

8. Concluding remarks and comments

We have shown that for a two-qubit state C with concurrence r = |2 det C| is distant from the
separable states by 1

2 sin−1 r with respect to the naturally defined Riemannian metric. After
having realized this fact, we can point out that 1

2 sin−1 r happens to be equal to the Schmidt
angle mentioned in [4]. The geometric property of three- and more-qubit concurrence is
reserved in future study.

In what follows, we make comments on three- and more-qubit concurrence, and give
examples of the measures (7.17). We take up det(CC∗) for a three-qubit. We denote
equation (7.1) in the Dirac notation by |�〉 = ∑

cjk�|ik�〉. The reduced density matrix
ρA, i.e., the partial trace of |�〉〈�| over qubits B and C, is expressed as

ρA = trBC |�〉〈�| =
∑
�,m

∑
j,k

c�jkcmjk|�〉〈m|, (8.1)

which corresponds to the 2 × 2 matrix CC∗. In contrast with this, the reduced density matrix
ρBC , i.e., the partial trace of |�〉〈�| over qubit A, is associated with the 4 × 4 matrix C∗C. In
[9], 2

√
det ρA is defined to be the concurrence between qubit A and the pair BC, and denoted

by CA(BC). Since det(CC∗) is real-valued, one has det(CC∗) = det ρA, which shows that
det(CC∗) is consistent with the concurrence defined in [9] as measures of entanglement. As
for the matrix C∗C, since rank(C∗C) � 2, the quantity det(C∗C) vanishes identically, so
that it cannot serve as a measure of entanglement. However, in [9], they deal with C∗C by
using the quantity tr(C∗CC∗C), which was defined to be tr(ρBCρ̃BC) in their notation. In our
notation, we have

tr(C∗CC∗C) = |(c0, c0)|2 + 2|(c0, c1)|2 + |(c1, c1)|2, (8.2)
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where ( , ) denotes the scalar product defined by (a, b) = ∑4
i=1 aibi .

In [16], Lévay uses the 2 × 2 matrices

C0 =
(

c000 c001

c010 c011

)
, C1 =

(
c100 c101

c110 c111

)
(8.3)

in place of the vectors ci , i = 0, 1, and introduce the Plücker coordinates to express the
complex plane spanned by C0 and C1 in the complex linear space C2×2. The quantities which
appear in the right-hand side of (7.7) and denoted by det(∗) with labels A,B serve as the
Plücker coordinates for the complex plane spanned by c0, c1. The Plücker coordinate method
is extended for multi-qubit states [17, 18].

In conclusion, we apply the measures (7.17) for four-qubit states. For the GHZ state
|�〉 = 1√

2
(|0000〉 + |1111〉), we have

det(FF ∗) = 1
4 , det(I4 − GG∗) = 1

4 . (8.4)

For the W state |�〉 = 1
2 (|0001〉 + |0010〉 + |0100〉 + |1000〉), we have

det(FF ∗) = 1
8 , det(I4 − GG∗) = 1

4 . (8.5)

For the sake of comparison, we touch on a separate state |�〉 = 1
2 (|00〉 + |11〉)⊗ (|00〉 + |11〉).

A calculation gives

det(FF ∗) = 1
4 , det(I4 − GG∗) = 0. (8.6)

The second equation of the above is trivial by definition. As in the case of three-qubits, we
may define the concurrence between qubit A and the triple BCD to be 2

√
det ρA, where

ρA = trBCD|�〉〈�|. Since the reduced density matrix ρA corresponds to FF ∗, the first
equation of (8.6) means that the concurrence between qubit A and the triple BCD is equal to
1, which coincides with the concurrence for the two-qubit state 1√

2
(|00〉 + |11〉).
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